Joint Center for Satellite Data Assimilation

CRTM Utility: LBLRTM 1/0 library v0.1.0 User Guide

January 8, 2014; rev35422

Change History

Date Author Change

2014-01-08 P.van Delst Initial release.

Contents

What’s Next iv
1 Introduction 1
1.1 Components v v vt e e e e e e e e 1

1.2 Conventions o e e 3
1.2.1 Naming of Objects and Instances of Objects 3

1.2.2 Naming of Definition Modules L o 3

1.2.3 Naming of I/O Modules 3

1.2.4 Standard Definition Module Procedures 0. 3

2 How to obtain the LBLRTM I/0 library 5
3 How to build the LBLRTM I/0 library 6
3.1 Configuration e 6
3.1.1 Supported compilers 6

3.2 Building the library oL e 7
3.3 Checking the library build L 7
3.4 Imstalling the library 8
3.5 Linking to the library L 8
3.6 Uninstalling the library e 9
3.7 Cleaning up o oo e e e 9
3.8 TFeedback and contact information oL Lo 9

4 How to use the LBLRTM I/0 library 10
4.1 Environment setup in your Fortran program 0oL 10
4.2 Define the LBLRTM File object e 10
4.3 Call the LBLRTM File read function 10
4.3.1 Single layer, single panel LBLRTM file 11

4.3.2 Single layer, double panel LBLRTM file 11

4.3.3 Multiple layer, double panel LBLRTM file 11

4.4 Inspecting the File object contents L L 11
4.5 Accessing the File object contents Lo 12
4.6 Cleaning up« . v v oo e e e 12
A Object and procedure interface definitions 13
A1 Main LBLRTM I/O Module o0 14
A.1.1 LBLRTMIO.Versiom interface i 14

A2 Fhdr Structure e 15
A.2.1 LBLRTM Fhdr DefineVersion interface 16
A.2.2 LBLRTM Fhdr Destroy interface 16
A.2.3 LBLRTM Fhdr_Inspect interface i 16
A.2.4 LBLRTM Fhdr_IsValid interface 17
A.2.5 LBLRTM Fhdr_SetValid interface 17
A.2.6 LBLRTM Fhdr_IOVersionm interface 18
A.2.7 LBLRTM_Fhdr Read interface 18
A.2.8 LBLRTM_Fhdr_Write interface 19

A3 Phdr Structure e 21
A.3.1 LBLRTM_Phdr DefineVersiom interface 22
A.3.2 LBLRTM Phdr Destroy interface 22
A.3.3 LBLRTM_Phdr_Imspect interface, 22
A.3.4 LBLRTM Phdr_IsValid interface, 23
A.3.5 LBLRTM_Phdr_SetValid interface 23
A.3.6 LBLRTM_Phdr_IOVersiom interface 24
A.3.7 LBLRTM_Phdr_Read interface 24
A.3.8 LBLRTM Phdr Write interface 25

A4 Panel Structure. L e 27
A.4.1 LBLRTM Panel Associated interface 28
A.4.2 LBLRTM Panel Create interface 28
A.4.3 LBLRTM Panel DefineVersiom interface 29
A.4.4 LBLRTM Panel Destroy interface, 29
A.4.5 LBLRTM_Panel_Inspect interface 30
A.4.6 LBLRTM Panel IsValid interface 30
A.4.7 LBLRTM Panel SetValid interface 31
A.4.8 LBLRTM Panel IOVersiom interface 31

ii

Ab

A6

AT

A.4.9 LBLRTM_Panel Read interface e 32

A.4.10 LBLRTM Panel Write interface. 33
Layer SIUCtUTe o oo e e e e 35
A.5.1 LBLRTM_Layer_Associated interface 36
A.5.2 LBLRTM Layer Create interface 36
A.5.3 LBLRTM_ Layer DefineVersion interface 37
A.5.4 LBLRTM Layer Destroy interface 37
A.5.5 LBLRTM Layer Frequency interface 38
A.5.6 LBLRTM_Layer_Inspect interface 38
A.5.7 LBLRTM_Layer_IsValid interface 39
A.5.8 LBLRTM Layer_SetValid interface 39
A.5.9 LBLRTM_Layer_IOVersion interface 40
A.5.10 LBLRTM Layer Read interface 40
A.5.11 LBLRTM Layer_Write interface 42
File Structure e 44
A.6.1 LBLRTM File Associated interface, 45
A.6.2 LBLRTMFile Createinterface. 45
A.6.3 LBLRTM File DefineVersion interface 46
A.6.4 LBLRTM File Destroy interface 46
A.6.5 LBLRTM_File_Imspect interface 47
A.6.6 LBLRTM File IsValidinterface i 47
A.6.7 LBLRTM_File_SetValid interface 48
A.6.8 LBLRTM File_IOVersionm interface 48
A.6.9 LBLRTM File Read interface it it 48
A.6.10 LBLRTM_File_Write interface 50
LBLRTM Utility Module 52
A.7.1 LBLRTM_EoF Message interface. 52
A.7.2 LBLRTM_EoL Writeinterface 52
A.7.3 LBLRTM File Open interface i i i ittt 53
A.7.4 LBLRTMUtilityVersion interface o4
A.7.5 LBLRTM.n Points interface. 54

iii

List of Figures

1.1

Al
A2
A3
A4
A5

Schematic illustration of the LBLRTM single- and double-panel datafile format. A datafile can

contain one, or multiple, layers of data. 2
LBLRTM_Fhdr_type structure definition. 15
LBLRTM_Phdr_type structure definition. oL 21
LBLRTM Panel_type structure definition. L 27
LBLRTM Layer_type structure definition. 35
LBLRTM_ File_type structure definition. L L 44

iv

List of Tables

1.1 The data constructs of the LBLRTM I/O library

1.2 Default action procedures available in object definition modules. TProcedures not available for the
Fhdr and Phdr objects. fProcedure available only for the Layer object.

1.3 Default action procedures available in object I/O modules.

What's Next

Single- and double-precision aware procedures Currently the setting of the default real and integer kind
definitions to work with either single- or double-precision LBLRTM files is done via the compilation step
via preprocessing. That is, the default real and integer kind definitions are explicitly set. So, once the
library is built a partiular way, e.g. to read double-precision files, it cannot be used to read the other type.
This was done because (a) it used already existing functionality in the CRTM codebase, and (b) for the
CRTM at least we always use double-precision files.

However, to make the library more flexible, the relevant definitions can be made and procedures overloaded
for programmatic switching between reading single- or double-precision LBLRTM datafiles.

NetCDF4 conversion and I/O A conversion procedure is planned to read the LBLRTM format datafile and
output a netCDF4 datafile.

More comprehensive use of OOP This is being planned mostly to insulate users from changes to the under-
lying data structures and objects. Procedures to get and set attributes of the various objects are planned
so that direct access of those attributes is not necessary. Use of type-bound procedures is also planned to
simplify the calling syntax. Fully-compliant Fortran2003 compilers are still relatively rare so this change
may take some time.

vi

Introduction

1.1 Components

The LBLRTM I/O library is constructed around five data constructs, described in table 1.1:

Table 1.1: The data constructs of the LBLRTM 1/O library

Component Description

Name

Fhdr The file header construct that is present at the start of each layer of data.
Phdr This is the panel header construct that is present at the start of each “chunk”

of data (usually referred to as a “panel”. See following.)

Panel This construct corresponds to a “chunk” of spectral data. An LBLRTM datafile
is referred to as being a single- or double-panel file. The former means a single
spectral quantity is present (e.g. optical depth), and the latter means that two
spectral quantities are present (e.g. radiance and transmittances).

Layer This construct contains spectral data for the entire frequency range of an
LBLRTM calculation for a single layer. The concept “layer” can correspond to
the spectral data for individual atmospheric layers of the input profile, or to
the final result for an entire atmosphere.

File This contruct is true to its name. It corresponds to an entire datafile of data
which may consist of a single layer or multiple layers, and for single- or double-
panel spectral data.

Each component has a definition module to define the object and some basic methods to manipulate it, and an
I/0 module to read and write instances of the objects from/to file.

Two components — the file header and panel header — are standalone, but the others contain other components,
i.e. the panel object contains panel headers; the layer object contains file headers; and the file object contains
layers. A schematic illustration of how the actual LBLRTM datafile format relates to the component definitions
is shown in figure 1.1.

Note, however, that when an LBLRTM file is read, the individual panel “chunks” of spectral data are concate-
nated into a single spectrum. Thus the Panel object itself is only used when reading from an LBLRTM file and
is not used in the File or Layer objects.

|- s s s |- s s s I
I b ! I !
I I I
! ! I ! I
! ! I ! I
" by ! " !
~ | l® EEm | i s
I I I [}
o I — I — I —
el I m Q0 m b M O m _ I m C wx v
c c c
h +=2 | -+ | -+ | (¢
e 1o B © © p B © © \ A c © |
— \ - oy — ! | — ! -
- L@ | o I L | @ s
S || R P- - === e S
% | [— __ [— ! | [} _ ! h_a
9 <=l o5 < L5 | el 25 s
] 2 5 N ° 5 !] Qo 5 ! 7
() o =EES) I Qv >0 I e >0 | o
—= | c | c I c
: O © I o o I O o I c
L LR & a R Oa | A e - Clwd
D Q-) . o n | r| e n |
! ! I ! I
I I I
I I I
I I I
I I I
I I I
I by ! I !
|||||||||| el L _______. L ________2
r\ —
(W) (0]
> =]
] ol
L/ Ay
=T s s m s |- s s s |- s s s
I b ! I !
I b ! I !
I b ! I !
I b ! I !
I I I
" —~ _" —~ | " —~ | “
)r \ o] n N | \ ~ | [}
el | M . M ! | M b S
— @© — @© — @
< A U & R W U ! [=Y U B o
& 1] 53 Tl &8 " T &S | | E
= " o} o — _" o} o — | " o} o — | o
3 o o O [o o O T T T T g o O 2>
I o] LS . o] 2 s \ | © =5 X T
s e a0 O e a0 O e a0 O o
Lnnu , <= c O L= =) ! L= c O ! _..m
— ‘n I — e I — et I
o | D v 5 ! D v 5 X | D v 5 X |&
= I c . c \ | m \ 2
L | () | [|
1 a "_ o " | [a " L
I I I
I I I
! ! I ! I
I I I
I I I
I I I
I by ! I !
||||||||||||||| | L ______1 L ________2

A

Figure 1.1: Schematic illustration of the LBLRTM single- and double-panel datafile format.

datafile can contain one, or multiple, layers of data.

1.2 Conventions

The following are conventions that have been adhered to in the current release of the LBLRTM I/O library.
They are guidelines intended to make understanding the code at a glance easier, to provide a recognisable “look
and feel”, and to minimise name space clashes.

1.2.1 Naming of Objects and Instances of Objects

The object! naming convention adopted for use in the LBLRTM 1/O library is,
LBLRTM_name_type

where name is an identifier for the particular component (e.g. panel header, layer, file, etc as listed in table 1.1).
All object type names are suffixed with “_type”. The “LBLRTM.” prefix is to define a namespace to minimise
name clashes. An instance of a object is then referred to via its name, or some sort of derivate of its name. Some
object declarations examples are,

TYPE(LBLRTM_File_type) :: sp_file, dp_file
TYPE(LBLRTM_Layer_type) :: layer

1.2.2 Naming of Definition Modules

Modules containing object definitions are termed definition modules. These modules contain the actual object
definitions as well as various utility procedures that operate on the object. The naming convention adopted for
definition modules in the LBLRTM I/O library is,

LBLRTM_name_Define

where all definition module names are suffixed with “_Define”. The actual source code files for these modules
have the same name with a “.£90” suffix.

1.2.3 Naming of 1/0O Modules

Modules containing all the object I/O procedures are termed, surprise, surprise, I/0 modules. These modules
contain function to read and write LBLRTM format datafiles. The naming convention adopted for I/O modules
in the LBLRTM I/O library is,

LBLRTM_name_I10

where all I/O module names are suffixed with “_I0”. As with the definition modules, the actual source code files
for these modules have the same name with a “.£90” suffix.

1.2.4 Standard Definition Module Procedures

The definition modules for the user-accessible objects (for practical purposes just File, although Layer, Fhdr,
Panel, and Phdrare accessible for now) contain a standard set of procedures for use with the object being defined.
The naming convention for these procedures is,

LBLRTM_name_action

where the available default actions for each procedure are listed in table 1.2. This is not an exhaustive list but
procedures for the actions listed in table 1.2 are generally going to be present.

The exception is that the objects with no allocatable components do not have a creation procedure.

IThe terms “derived type” and “structure” can also be used as the code is not yet fully OO - that’s for future updates.

Table 1.2: Default action procedures available in object definition modules. TProcedures not avail-
able for the Fhdr and Phdr objects. *Procedure available only for the Layer object.

Action Type Description
OPERATOR (== Elemental function Tests the equality of two structures.
OPERATOR (/=) Elemental function Tests the inequality of two structures.
Associated! Elemental function Tests if the object components have been allocated.
Createl Elemental subroutine Allocates any allocatable object components.
Destroy Elemental subroutine Reinitialises an object.
DefineVersion Subroutine Returns the module version information.
Frequency* Subroutine Compute and return the spectral frequency grid.
Inspect Subroutine Displays object contents to stdout.
IsValid Elemental function Tests if the object contains valid data.
SetValid Elemental subroutine Flags the object as containing valid data.

Table 1.3: Default action procedures available in object 1/O modules.
Action Type Description
I0Version Subroutine Returns the module version information.
Read Function Loads an instance of an object with data read from file.
Write Function Write an instance of an object to file.

Some examples of these procedure names are,

LBLRTM_File_Associated
LBLRTM_File_IsValid
LBLRTM_Layer_Destroy
LBLRTM_Layer_Frequency
LBLRTM_File_Inspect

The relational operators, == and /=, are implemented via overloaded Equal and NotEqual action procedures
respectively, as is shown below for the File structure,

INTERFACE OPERATOR (==
MODULE PROCEDURE LBLRTM_File_Equal
END INTERFACE OPERATOR(==

INTERFACE OPERATOR(/=)
MODULE PROCEDURE LBLRTM_File_NotEqual
END INTERFACE OPERATOR(/=)

For a complete list of the definition and I/O module procedures for use with the available objects, see appendix
A.

2
How to obtain the LBLRTM 1/0 library

The LBLRTM I/0 library source code is released in a compressed tarball via the CRTM ftp site utility directory:
ftp://ftp.emc.ncep.noaa.gov/jcsda/CRTM/utility/1blrtmio

The v0.1.0 release is available directly from
ftp://ftp.emc.ncep.noaa.gov/jcsda/CRTM/utility/1blrtmio/v0.1.0

Also note that additional releases, e.g. beta or experimental branches, may also made available on this ftp site.

ot

ftp://ftp.emc.ncep.noaa.gov/jcsda/CRTM/utility/lblrtmio
ftp://ftp.emc.ncep.noaa.gov/jcsda/CRTM/utility/lblrtmio/v0.1.0

3
How to build the LBLRTM 1/0 library

3.1 Configuration

The LBLRTM I/0 tarball directory structure looks like:

v

[-README library build instructions
|-configure configuration script
|-Makefile.in makefile template
‘-libsrc/ ..., library source files

The build system for the LBLRTM I/O library uses a GNU autoconf-generated configure script.

You run the configuration script like so:
$./configure --prefix=install-directory

The --prefix switch sets the installation directory and defaults to /usr/local so make sure you set it to a
directory in which you have write access.

By default, the LBLRTM I/O library is set to read files generated from a double-precision LBLRTM executable
(what is used in the CRTM project by default). If you want to read datafiles from a “standard” single precision
LBLRTM executable, it needs to be enabled in the configuration:

$./configure --enable-single --prefix=install-directory

The switch between single-and double-precision capability is achieved via preprocessing that redefines the default
real and integer kind types. By default the configuration step sets preprocessing macros INT_SIZE and REAL_SIZE
to a value of 8 (indicating byte size) to allow for reading of double-precision files. The --enable-single switch
sets the value of those macros to 4 for use with single-precision files.

Note, however, that the test datafiles provided with the LBLRTM I/O library are double-precision files generated
on a little-endian machine. So if you build the single-precision version of the LBLRTM I/0 library the associated
test will fail.

3.1.1 Supported compilers

The LBLRTM I/0 library configuration is set up for the following four compilers:

e ifort

e gfortran
e xI1f2003
e pgf9h

For these compilers, the configuration file will use the correct compiler switches to promote the single-precision
real and integer variables to double-precision by default. For any other compilers, please contact CRTM support?®
for information on how to get the library built.

3.2 Building the library

Once the configure script has been run successfully, to start building the library simply type

$ make

3.3 Checking the library build

To run the accompanying tests using the just-built library, simply type
$ make check

This will build and run any tests. The current output from the (successful) test runs looks like:

skok st ok ok o ok sk ok ok o ok sk o ok sk ok ok ook sk sk ok ok sk ook stk sk ok sk o ok ok sk ook sk ok ok ok sk ok ok ok ok sk k ok ok
check_lblrtmio

Check/example program for the LBLRTM File I/0 functions
using

LBLRTM I/0 library version: v0.1.0
sk sk ok o ok sk sk ok o ok sk sk ok sk sk sk ok o ok sk sk sk sk ok ok sk sk sk ke ok sk sk sk sk ok sk sk sk sk ok ok sk sk ok sksk sk sk ok sk sk ok ok

Test reading a single layer, single panel LBLRTM file...

LBLRTM_Utility::File_Open(INFORMATION) : Set for DOUBLE-precision LBLRTM files
LBLRTM_File_I0: :Read (INFORMATION) : Reading layer #1...

LBLRTM_Layer_I0: :Read (INFORMATION) : Reading spectral chunk #1...

LBLRTM_Panel_IO0::Read (INFORMATION) : Reading spectrum #1...

LBLRTM_Layer_I0::Read (INFORMATION) : Reading spectral chunk #2...

LBLRTM_Panel_I0: :Read (INFORMATION) : Reading spectrum #1...
..etc...

Test reading a single layer, double panel LBLRTM file...

ancep.list.emc.jcsda_crtm.support@noaa.gov

LBLRTM_Utility::File_Open(INFORMATION) : Set for DOUBLE-precision LBLRTM files
LBLRTM_File_I0: :Read (INFORMATION) : Reading layer #1...

LBLRTM_Layer_I0: :Read (INFORMATION) : Reading spectral chunk #1...

LBLRTM_Panel_IO0::Read (INFORMATION) : Reading spectrum #1...

LBLRTM_Panel_I0: :Read (INFORMATION) : Reading spectrum #2...

LBLRTM_Layer_I0: :Read (INFORMATION) : Reading spectral chunk #2...

LBLRTM_Panel_I0: :Read (INFORMATION) : Reading spectrum #1...

LBLRTM_Panel_I0: :Read (INFORMATION) : Reading spectrum #2...
..etc...

Test reading some layers from a multiple layer, double panel LBLRTM file...

LBLRTM_Utility::File_Open(INFORMATION) : Set for DOUBLE-precision LBLRTM files
LBLRTM_File_IO::Read (INFORMATION) : Reading layer #1...

LBLRTM_Layer_I0::Read (INFORMATION) : Reading spectral chunk #1...
LBLRTM_Panel_I0: :Read (INFORMATION) : Reading spectrum #1...
LBLRTM_Panel_I0: :Read (INFORMATION) : Reading spectrum #2...
LBLRTM_Layer_I0: :Read (INFORMATION) : Reading spectral chunk #2...
LBLRTM_File_IO::Read (INFORMATION) : Reading layer #2...
LBLRTM_Layer_I0::Read (INFORMATION) : Reading spectral chunk #1...
LBLRTM_Panel_I0: :Read (INFORMATION) : Reading spectrum #1...
LBLRTM_Panel_I0: :Read (INFORMATION) : Reading spectrum #2...
..etc...

TEST SUCCESSFUL!

As mentioned previously, the test datafiles used in the above check target are little-endian double-precision
datafiles.

3.4 Installing the library

To install the library, type:
$ make install

Installation of the library always occurs into its own directory within the directory specified by the --prefix
switch. The name of the installation directory follows the convention:

library-name_version

So, if a library version (say, v1.0.0) build was configured with --prefix=$PWD, then the installation directory
will be

${PWD}/1blrtmio_v1.0.0

3.5 Linking to the library

Let’s assume the above install was moved into $HOME/local. To use the library in your own application, the
usual environment variables would be modified something like:

libroot="${HOME}/local/lblrtmio_v1.0.0"
FCFLAGS="-I${libroot}/include ${FCFLAGS}"
LDFLAGS="-L${libroot}/1lib ${LDFLAGS}"
LIBS="-11lblrtmio"

(with appropriate syntax changes for csh)

3.6 Uninstalling the library

To uninstall the library (assuming you haven’t moved the installation directory contents somewhere else) you
can type:

$ make uninstall

This will delete the created installation directory. So, for a library version, say, v1.0.0, if your configure script
invocation was something like

$./configure --prefix=$PWD ...other command line arguments...

then the uninstall target will delete the $PWD/1blrtmio_v1.0.0 directory.

3.7 Cleaning up

Two targets are provided for cleaning up after the build. To remove all of the build products type
$ make clean
To also remove all of the configuration products (i.e. the generated makefiles) type

$ make distclean

3.8 Feedback and contact information

That’s pretty much it. Any questions or bug reports can be sent to CRTM Support.
ncep.list.emc.jcsda_crtm.support@noaa.gov

If you have problems building the library please include the generated config.log file in your email correspon-
dence.

mailto:ncep.list.emc.jcsda_crtm.support@noaa.gov

How to use the LBLRTM 1/0O library

This section will hopefully get you started using the LBLRTM I/O library as quickly as possible. We will only
be referring to the reading of datafiles in this section.

4.1 Environment setup in your Fortran program

All of the LBLRTM I/O user procedures, parameters, and derived data type definitions are accessible via the
container module LBLRTMIO Module. Thus, one needs to put the following statement in any calling program,
module or procedure,

USE LBLRTMIO_Module

Once you become more familiar with the components of the LBLRTM I/0 library you require, you can also
specify an ONLY clause with the USE statement,

USE LBLRTMIO Module[, ONLY:only-list]

where only-list is a list of the symbols you want to “import” from LBLRTMIO Module. This latter form is the
preferred style for self-documenting your code; e.g. when you give the code to someone else, they will be able to
identify from which module various symbols in your code originate.

You can find out what version of the LBLRTM I/0 library you are using by calling the LBLRTMIO Version
subroutine.

4.2 Define the LBLRTM File object

An LBLRTM File object is declared like so,
TYPE(LBLRTM_File_type) :: ofile

One additional variable required is an integer to hold the error status of the I/O functions, e.g.
INTEGER :: err_stat

That’s pretty much it.

4.3 Call the LBLRTM File read function

Below are three examples of calling the LBLRTM File read function. See A.6.9 for the full description of the
function interface.

10

4.3.1 Single layer, single panel LBLRTM file

Reading a single layer, single panel file (e.g. an optical depth file) is the simplest. Let’s call the input file
“ODdeflt_100”. To read it, the syntax is:

err_stat = LBLRTM_File_Read(ofile, ’0Ddeflt_100’)
IF (err_stat /= SUCCESS) THEN

handle error...
END IF

The error status return code “SUCCESS” is defined in the library.

4.3.2 Single layer, double panel LBLRTM file

Because there is no unambiguous way to determine if an LBLRTM file is single or double panel, if a file is a
double panel file (e.g. containing radiance and transmittance data) that information must be supplied to the
read function. By default the function reads single panel files. To read a double panel file (let’s call this one
“TAPE12”), the syntax is:

err_stat = LBLRTM_File_Read(ofile, ’TAPE12’, Double_Panel=.TRUE.)
IF (err_stat /= SUCCESS) THEN

handle error...
END IF

The optional logical argument “Double Panel” causes the File object to be correctly allocated to hold both
sets of spectral data.

4.3.3 Multiple layer, double panel LBLRTM file

As with the single/double panel format issue, there is also no unambiguous way to determine up front if an
LBLRTM file contains multiple layers. So, again, that information must be supplied to the read function. By
default the function reads only a single layer. To read multiple layers from a file (let’s call this one “TAPE13”),
the syntax is:

err_stat = LBLRTM_File_Read(ofile, ’TAPE13’, n_Layers=10, Double_Panel=.TRUE.)
IF (err_stat /= SUCCESS) THEN

handle error...
END IF

The optional integer argument “n_Layers” specifies the amount of data allocated for the File object and the
number of layers to read in. If there are more layers in the file than that specified, they are ignored.

4.4 Inspecting the File object contents

You can dump the contents of the LBLRTM File object to stdout via the LBLRTM_File_Inspect subroutine like
so:

CALL LBLRTM File_Inspect(ofile)

Note that this will generate a lot of output so it’s mostly useful for debugging purposes.

11

4.5 Accessing the File object contents

The LBLRTM I/0 library is (not yet) fully object oriented. As such, there are no Get methods for the File
object and access to the data is done via direct reference to the object components. See figures A.5 and A.4 for

the complete File and Layer object definitions respetively.

The following code snippet shows how the individual layer spectra can be accessed, including use of a Layer
object “method” to compute the frequency grid for the spectrum:

! Some type declarations
TYPE(LBLRTM_File_type) :: oFile
INTEGER :: i, k, n

REAL(DP), ALLOCATABLE :: frequency

...Read file, etc...

! Loop over the layer data
DO k = 1, oFileYn_Layers

! Compute the frequency grid for the current layer
CALL LBLRTM_Layer_Frequency(oFile}Layer(k), frequency)
IF (.NOT. ALLOCATED(frequency)) THEN

handle error...
END IF

! Loop over the spectra (i.e. single- or double-panel)
DO n = 1, oFileYLayer(k)’n_Spectra

! Loop over the spectral points
DO i = 1, oFilejLayer(k)%n_Points

! Display current spectrum value for each frequency
PRINT *, f(i), oFile}Layer(k)%Spectrum(i,n)

END DO
END DO

! Not strictly necessary, but a good habit
DEALLOCATE (frequency)

END DO

4.6 Cleaning up

You don’t have to explicitly destroy LBLRTM File objects, but it’s a good habit to get into. Deallocation of
the File object is done via the LBLRTM_File Destroy subroutine like so:

CALL LBLRTM.File Destroy(ofile)

12

A
(Object and procedure interface definitions

13

A.1 Main LBLRTM 1/0 Module

A.1.1 LBLRTMIO Version interface

NAME:
LBLRTMIO_Version

PURPOSE:
Subroutine to the LBLRTM I/0 version information.

CALLING SEQUENCE:
CALL LBLRTMIO_Version(version)

OUTPUTS:
version: Character string identifying the LBLRTM I/0 library
release version.
UNITS: N/A
TYPE: CHARACTER (%)

DIMENSION: Scalar
ATTRIBUTES: INTENT (OUT)

14

A.2 Fhdr Structure

TYPE :: LBLRTM_Fhdr_type
LOGICAL :: Is_Valid = .FALSE.
CHARACTER(80) :: User_ID = 2
REAL (DP) :: Column_Scale_Factor = 0.0_DP
REAL (FP) :: Average_Layer_Pressure = 0.0_FP
REAL (FP) :: Average_Layer_Temperature = 0.0_FP
CHARACTER(8) :: Molecule_Id(N_MOL) =
REAL (FP) :: Molecule_Column_Density(N_MOL) = 0.0_FP
REAL (FP) :: Broadening_Gas_Column_Density = 0.0_FP
REAL (FP) :: Frequency_Interval = 0.0_FP
REAL (DP) :: Begin_Frequency = 0.0_DP
REAL (DP) :: End_Frequency = 0.0_DP
REAL (FP) :: Boundary_Temperature = 0.0_FP
REAL (FP) :: Boundary_Emissivity = 0.0_FP
INTEGER(IP) :: n_Molecules = O_IP
INTEGER (IP) :: n_Layer = 0_IP
INTEGER (IP) :: OD_Layering_Control_Flag = 0_IP
CHARACTER(8) :: Calculation_Date =
CHARACTER(8) :: Calculation_Time = 2
CHARACTER(8) :: ancillary(8) = 7
TYPE(RunFlags_type) :: RunFlags

END TYPE LBLRTM_Fhdr_type

Figure A.1: LBLRTM_Fhdr_type structure definition.

15

A.2.1 LBLRTM_Fhdr_DefineVersion interface

NAME:
LBLRTM_Fhdr_DefineVersion

PURPOSE:
Subroutine to return the version information for the
definition module(s).

CALLING SEQUENCE:
CALL LBLRTM_Fhdr_DefineVersion(Id)

OUTPUTS:
Id: Character string containing the version Id information for the
definition module(s).
UNITS: N/A
TYPE: CHARACTER (%)

DIMENSION: Scalar
ATTRIBUTES: INTENT(QUT)

A.2.2 LBLRTM Fhdr _Destroy interface

NAME:
LBLRTM_Fhdr_Destroy

PURPOSE:
Elemental subroutine to re-initialize LBLRTM_Fhdr objects.

CALLING SEQUENCE:
CALL LBLRTM_Fhdr_Destroy(LBLRTM_Fhdr)

OBJECTS:
LBLRTM_Fhdr: Re-initialized LBLRTM_Fhdr instance.
UNITS: N/A
TYPE: LBLRTM_Fhdr_type

DIMENSION: Scalar or any rank
ATTRIBUTES: INTENT(OUT)

A.2.3 LBLRTM Fhdr_Inspect interface

NAME:
LBLRTM_Fhdr_Inspect
PURPOSE:

Subroutine to print the contents of an instance of an LBLRTM_Fhdr

16

object to stdout.

CALLING SEQUENCE:

CALL LBLRTM_Fhdr_Inspect(LBLRTM_Fhdr)

OBJECTS:
LBLRTM_Fhdr:

LBLRTM_Fhdr object to display.
UNITS: N/A

TYPE: LBLRTM_Fhdr_type
DIMENSION: Scalar
ATTRIBUTES: INTENT(IN)

A.2.4 LBLRTM_Fhdr_IsValid interface

NAME:

LBLRTM_Fhdr_IsValid

PURPOSE:

Elemental function to test if the LBLRTM_Fhdr object contains

valid data.

CALLING SEQUENCE:

Status = LBLRTM_Fhdr_IsValid(LBLRTM_Fhdr)

OBJECTS:
LBLRTM_Fhdr:

FUNCTION RESULT:
Status:

Instance which is to have its status tested.
UNITS: N/A

TYPE: LBLRTM_Fhdr_type

DIMENSION: Scalar or any rank

ATTRIBUTES: INTENT(IN)

The return value is a logical value indicating
if the object contains valid data.

UNITS: N/A

TYPE: LOGICAL

DIMENSION: Same as input

A.2.5 LBLRTM Fhdr_SetValid interface

NAME:

LBLRTM_Fhdr_SetValid

PURPOSE:

Elemental subroutine to mark an instance of an LBLRTM_Fhdr object
as containing valid data.

17

CALLING SEQUENCE:
CALL LBLRTM_Fhdr_SetValid(LBLRTM_Fhdr)

OBJECTS:
LBLRTM_Fhdr: Instance which is to have its validity set.
UNITS: N/A
TYPE: LBLRTM_Fhdr_type

DIMENSION: Scalar or any rank
ATTRIBUTES: INTENT(IN)

A.2.6 LBLRTM_Fhdr_I0Version interface

NAME:
LBLRTM_Fhdr_IOVersion

PURPOSE:
Subroutine to return the version information for the module.

CALLING SEQUENCE:
CALL LBLRTM_Fhdr_IOVersion(Id)

OUTPUTS:
Id: Character string containing the version Id information for the
module.
UNITS: N/A
TYPE: CHARACTER (%)

DIMENSION: Scalar
ATTRIBUTES: INTENT(OUT)

A.2.7 LBLRTM_Fhdr_Read interface

NAME:
LBLRTM_Fhdr_Read

PURPOSE:
Function to read an LBLRTM file header from an LBLRTM format
file.

CALLING SEQUENCE:
Error_Status = LBLRTM_Fhdr_Read(&
LBLRTM_Fhdr, &
Fileld , &
EOF)

OBJECTS:

18

LBLRTM_Fhdr: LBLRTM file header object to hold the data.
UNITS: N/A
TYPE: LBLRTM_Fhdr_type
DIMENSION: Scalar
ATTRIBUTES: INTENT(OUT)

INPUTS:
FileId: The unit number for the already open LBLRTM file.
UNITS: N/A
TYPE: INTEGER
DIMENSION: Scalar
ATTRIBUTES: INTENT(IN)
OUTPUTS:
EOF: Integer flag indicating end-of-file status for the

LBLRTM format file after the read. Valid return values

are defined in the LBLRTM_Parameters module.

If == LBLRTM_FILE_EOQF: End-0f-File has been reached.
The file is then closed.

== LBLRTM_FILE_OK: No EOF or EOL condition. File
is positioned for further
reading.
== LBLRTM_FILE_UNDEF: An error occurred. The file is
closed.
UNITS: N/A
TYPE: INTEGER

DIMENSION: Scalar
ATTRIBUTES: INTENT(OUT)

FUNCTION RESULT:

Error_Status: The return value is an integer defining the error status.
The error codes are defined in the Message_Handler module.
If == SUCCESS the LBLRTM file header read was successful

== FAILURE an error occurred

UNITS: N/A
TYPE: INTEGER
DIMENSION: Scalar

SIDE EFFECTS:

If an error occurs or the end-of-file is encountered, the input file is
closed.

A.2.8 LBLRTM Fhdr_Write interface
NAME :
LBLRTM_Fhdr_Write
PURPOSE:

Function to write an LBLRTM file header to an LBLRTM format
file.

19

CALLING SEQUENCE:
Error_Status

OBJECTS:
LBLRTM_Fhdr:

INPUTS:
FileId:

FUNCTION RESULT:
Error_Status:

SIDE EFFECTS:

LBLRTM_Fhdr_Write(&
LBLRTM_Fhdr, &
FileId)

LBLRTM file header object to write to file.
UNITS: N/A

TYPE: LBLRTM_Fhdr_type

DIMENSION: Scalar

ATTRIBUTES: INTENT(IN)

The unit number for the already open LBLRTM file.
UNITS: N/A

TYPE: INTEGER

DIMENSION: Scalar

ATTRIBUTES: INTENT(IN)

The return value is an integer defining the error status.

The error codes are defined in the Message_Handler module.

If == SUCCESS the LBLRTM file header write was successful
== FAILURE an error occurred

UNITS: N/A

TYPE: INTEGER

DIMENSION: Scalar

If an error occurs, the output file is closed.

20

A.3 Phdr Structure

TYPE :: LBLRTM_Phdr_type

LOGICAL :: Is_Valid = .FALSE.
REAL (DP) :: Begin_Frequency = 0.0_DP
REAL (DP) :: End_Frequency = 0.0_DP
REAL (FP) :: Frequency_Interval = 0.0_FP
INTEGER(IP) :: n_Points = 0_IP

END TYPE LBLRTM_Phdr_type

Figure A.2: LBLRTM_Phdr_type structure definition.

21

A.3.1 LBLRTM_Phdr_DefineVersion interface

NAME:
LBLRTM_Phdr_DefineVersion

PURPOSE:
Subroutine to return the version information for the
definition module(s).

CALLING SEQUENCE:
CALL LBLRTM_Phdr_DefineVersion(Id)

OUTPUTS:
Id: Character string containing the version Id information for the
definition module(s).
UNITS: N/A
TYPE: CHARACTER (%)

DIMENSION: Scalar
ATTRIBUTES: INTENT(QUT)

A.3.2 LBLRTM_Phdr_Destroy interface

NAME:
LBLRTM_Phdr_Destroy

PURPOSE:
Elemental subroutine to re-initialize LBLRTM_Phdr objects.

CALLING SEQUENCE:
CALL LBLRTM_Phdr_Destroy(LBLRTM_Phdr)

OBJECTS:
LBLRTM_Phdr: Re-initialized LBLRTM_Phdr instance.
UNITS: N/A
TYPE: LBLRTM_Phdr_type

DIMENSION: Scalar or any rank
ATTRIBUTES: INTENT(OUT)

A.3.3 LBLRTM_Phdr_Inspect interface

NAME:
LBLRTM_Phdr_Inspect

PURPOSE:
Subroutine to print the contents of an instance of an LBLRTM_Phdr

22

object to stdout.

CALLING SEQUENCE:

CALL LBLRTM_Phdr_Inspect(LBLRTM_Phdr)

OBJECTS:
LBLRTM_Phdr:

LBLRTM_Phdr object to display.
UNITS: N/A

TYPE: LBLRTM_Phdr_type
DIMENSION: Scalar
ATTRIBUTES: INTENT(IN)

A.3.4 LBLRTM_Phdr_IsValid interface

NAME:

LBLRTM_Phdr_IsValid

PURPOSE:

Elemental function to test if the LBLRTM_Phdr object contains

valid data.

CALLING SEQUENCE:

Status = LBLRTM_Phdr_IsValid(LBLRTM_Phdr)

OBJECTS:
LBLRTM_Phdr:

FUNCTION RESULT:
Status:

Instance which is to have its status tested.
UNITS: N/A

TYPE: LBLRTM_Phdr_type

DIMENSION: Scalar or any rank

ATTRIBUTES: INTENT(IN)

The return value is a logical value indicating
if the object contains valid data.

UNITS: N/A

TYPE: LOGICAL

DIMENSION: Same as input

A.3.5 LBLRTM_Phdr_SetValid interface

NAME:

LBLRTM_Phdr_SetValid

PURPOSE:

Elemental subroutine to mark an instance of an LBLRTM_Phdr object
as containing valid data.

23

CALLING SEQUENCE:
CALL LBLRTM_Phdr_SetValid(LBLRTM_Phdr)

OBJECTS:
LBLRTM_Phdr: Instance which is to have its validity set.
UNITS: N/A
TYPE: LBLRTM_Phdr_type

DIMENSION: Scalar or any rank
ATTRIBUTES: INTENT(IN)

A.3.6 LBLRTM_Phdr_I0OVersion interface

NAME:
LBLRTM_Phdr_IOVersion

PURPOSE:
Subroutine to return the version information for the module.

CALLING SEQUENCE:
CALL LBLRTM_Phdr_IOVersion(Id)

OUTPUTS:
Id: Character string containing the version Id information for the
module.
UNITS: N/A
TYPE: CHARACTER (%)

DIMENSION: Scalar
ATTRIBUTES: INTENT(OUT)

A.3.7 LBLRTM_Phdr_Read interface

NAME:
LBLRTM_Phdr_Read

PURPOSE:
Function to read an LBLRTM panel header from an LBLRTM format
file.

CALLING SEQUENCE:
Error_Status = LBLRTM_Phdr_Read(&
LBLRTM_Phdr, &
Fileld , &
EOF)

OBJECTS:

24

LBLRTM_Phdr: LBLRTM panel header object to hold the data.
UNITS: N/A
TYPE: LBLRTM_Phdr_type
DIMENSION: Scalar
ATTRIBUTES: INTENT(OUT)

INPUTS:
FileId: The unit number for the already open LBLRTM file.
UNITS: N/A
TYPE: INTEGER
DIMENSION: Scalar
ATTRIBUTES: INTENT(IN)
OUTPUTS:
EOF: Integer flag indicating end-of-file status for the

LBLRTM format file after the read. Valid return values

are defined in the LBLRTM_Parameters module.

If == LBLRTM_FILE_EOQF: End-0f-File has been reached.
The file is then closed.

== LBLRTM_FILE_EOL: End-Of-Layer has been reached.

In this case, the next read
should be of the file header
for the (possible) next layer.

== LBLRTM_FILE_OK: No EOF or EOL condition. The
next read should be the panel
data.
== LBLRTM_FILE_UNDEF: An error occurred. The file is
closed.
UNITS: N/A
TYPE: INTEGER

DIMENSION: Scalar
ATTRIBUTES: INTENT(OUT)

FUNCTION RESULT:

Error_Status: The return value is an integer defining the error status.
The error codes are defined in the Message_Handler module.
If == SUCCESS the LBLRTM panel header read was successful

== FAILURE an error occurred

UNITS: N/A
TYPE: INTEGER
DIMENSION: Scalar

SIDE EFFECTS:

If an error occurs or the end-of-file is encountered, the input file is
closed.

A.3.8 LBLRTM Phdr _Write interface

NAME:
LBLRTM_Phdr_Write

PURPOSE:
Function to write an LBLRTM panel header to an LBLRTM format
file.

CALLING SEQUENCE:
Error_Status = LBLRTM_Phdr_Write(&
LBLRTM_Phdr, &

Fileld)
OBJECTS:
LBLRTM_Phdr: LBLRTM panel header object to write to file.
UNITS: N/A
TYPE: LBLRTM_Phdr_type
DIMENSION: Scalar
ATTRIBUTES: INTENT(IN)
INPUTS:
FileId: The unit number for the already open LBLRTM file.
UNITS: N/A
TYPE: INTEGER

DIMENSION: Scalar
ATTRIBUTES: INTENT(IN)

FUNCTION RESULT:
Error_Status: The return value is an integer defining the error status.
The error codes are defined in the Message_Handler module.
If == SUCCESS the LBLRTM panel header write was successful
== FAILURE an error occurred
UNITS: N/A
TYPE: INTEGER
DIMENSION: Scalar

SIDE EFFECTS:
If an error occurs, the output file is closed.

26

A.4 Panel Structure

TYPE :: LBLRTM_Panel_type
! Allocation and valid data indicator
LOGICAL :: Is_Allocated = .FALSE.
LOGICAL :: Is_Valid = .FALSE.
! The panel header
TYPE(LBLRTM_Phdr_type) :: Header
! Dimensions

INTEGER :: n_Points =0 ! L

INTEGER :: n_Spectra =0 ! N

! Data

REAL(FP), ALLOCATABLE :: Spectrum(:,:) ! L x N

END TYPE LBLRTM_Panel_type

Figure A.3: LBLRTM_Panel_type structure definition.

27

A.4.1 LBLRTM Panel_Associated interface

NAME:
LBLRTM_Panel_Associated

PURPOSE:
Elemental function to test the status of the allocatable components
of the LBLRTM_Panel object.

CALLING SEQUENCE:
Status = LBLRTM_Panel_Associated(LBLRTM_Panel)

OBJECTS:
LBLRTM_Panel: Structure which is to have its member’s
status tested.
UNITS: N/A
TYPE: LBLRTM_Panel_type
DIMENSION: Scalar or any rank
ATTRIBUTES: INTENT(IN)

FUNCTION RESULT:
Status: The return value is a logical value indicating if the
object has been allocated.
UNITS: N/A
TYPE: LOGICAL
DIMENSION: Same as input

A.4.2 LBLRTM Panel_Create interface

NAME:
LBLRTM_Panel_Create

PURPOSE:
Elemental subroutine to create an instance of an LBLRTM_Panel object.

CALLING SEQUENCE:

CALL LBLRTM_Panel_Create(LBLRTM_Panel, &
LBLRTM_PHdr , &
n_Spectra , &
Err_Msg = Err_Msg)

0BJECTS:
LBLRTM_Panel: LBLRTM_Panel object structure.
UNITS: N/A
TYPE: LBLRTM_Panel_type
DIMENSION: Scalar or any rank
ATTRIBUTES: INTENT(OUT)
INPUTS:

28

LBLRTM_Phdr: LBLRTM_Phdr object for the current panel.
UNITS: N/A
TYPE: LBLRTM_Phdr_type
DIMENSION: Conformable with LBLRTM_Panel
ATTRIBUTES: INTENT(IN)

n_Spectra: Number of spectra (or "panels").
Must be > O.
UNITS: N/A
TYPE: INTEGER
DIMENSION: Conformable with LBLRTM_Panel
ATTRIBUTES: INTENT(IN)

OPTIONAL OUTPUTS:

Err_Msg: String containing error message text if allocation
failde.
UNITS: N/A
TYPE: CHARACTER (*)

DIMENSION: Conformable with LBLRTM_Panel
ATTRIBUTES: INTENT(OUT), OPTIONAL

A.4.3 LBLRTM Panel _DefineVersion interface

NAME:
LBLRTM_Panel_DefineVersion

PURPOSE:
Subroutine to return the version information for the
definition module(s).

CALLING SEQUENCE:
CALL LBLRTM_Panel_DefineVersion(Id)

OUTPUTS:
Id: Character string containing the version Id information for the
definition module(s).
UNITS: N/A
TYPE: CHARACTER (%)

DIMENSION: Scalar
ATTRIBUTES: INTENT(QUT)

A.4.4 LBLRTM Panel Destroy interface

NAME:
LBLRTM_Panel_Destroy

29

PURPOSE:
Elemental subroutine to re-initialize LBLRTM_Panel objects.

CALLING SEQUENCE:
CALL LBLRTM_Panel_Destroy(LBLRTM_Panel)

OBJECTS:
LBLRTM_Panel: Re-initialized LBLRTM_Panel instance.
UNITS: N/A
TYPE: LBLRTM_Panel_type

DIMENSION: Scalar or any rank
ATTRIBUTES: INTENT(OUT)

A.4.5 LBLRTM Panel Inspect interface

NAME:
LBLRTM_Panel_Inspect

PURPOSE:
Subroutine to print the contents of an instance of an LBLRTM_Panel
object to stdout.

CALLING SEQUENCE:
CALL LBLRTM_Panel_Inspect(LBLRTM_Panel)

OBJECTS:
LBLRTM_Panel: LBLRTM_Panel object to display.
UNITS: N/A
TYPE: LBLRTM_Panel_type

DIMENSION: Scalar
ATTRIBUTES: INTENT(IN)

A.4.6 LBLRTM Panel_IsValid interface

NAME:
LBLRTM_Panel_IsValid

PURPOSE:
Elemental function to test if the LBLRTM_Panel object contains
valid data.

CALLING SEQUENCE:
Status = LBLRTM_Panel_IsValid(LBLRTM_Panel)

OBJECTS:
LBLRTM_Panel: Instance which is to have its status tested.

30

UNITS: N/A

TYPE: LBLRTM_Panel_type
DIMENSION: Scalar or any rank
ATTRIBUTES: INTENT(IN)

FUNCTION RESULT:
Status: The return value is a logical value indicating
if the object contains valid data.
UNITS: N/A
TYPE: LOGICAL
DIMENSION: Same as input

A.4.7 LBLRTM_Panel_SetValid interface

NAME:
LBLRTM_Panel_SetValid

PURPOSE:
Elemental subroutine to mark an instance of an LBLRTM_Panel object
as containing valid data.

Valid flag is set only if the LBLRTM_Panel object is allocated AND
if the embedded LBLRTM_Phdr object is also valid.

CALLING SEQUENCE:
CALL LBLRTM_Panel_SetValid(LBLRTM_Panel)

OBJECTS:
LBLRTM_Panel: Instance which is to have its validity set.
UNITS: N/A
TYPE: LBLRTM_Panel_type

DIMENSION: Scalar or any rank
ATTRIBUTES: INTENT(IN)

A.4.8 LBLRTM Panel_I0OVersion interface
NAME:
LBLRTM_Panel_IOVersion

PURPOSE:
Subroutine to return the version information for the module.

CALLING SEQUENCE:
CALL LBLRTM_Panel_IOVersion(Id)

OUTPUTS:

31

Id: Character string containing the version Id information for the

module.
UNITS: N/A
TYPE: CHARACTER (%)

DIMENSION: Scalar
ATTRIBUTES: INTENT(OUT)

A.4.9 LBLRTM Panel_Read interface

NAME:
LBLRTM_Panel_Read

PURPOSE:
Function to read an LBLRTM panel from an LBLRTM format
file.

CALLING SEQUENCE:
Error_Status = LBLRTM_Panel_Read(&
LBLRTM_Panel, &

Fileld , &
EOF , &
Double_Panel = Double_Panel, &
Quiet = Quiet)
OBJECTS:
LBLRTM_Panel: LBLRTM panel object to hold the data.
UNITS: N/A
TYPE: LBLRTM_Panel_type
DIMENSION: Scalar
ATTRIBUTES: INTENT(OUT)
INPUTS:
FileId: The unit number for the already open LBLRTM file.
UNITS: N/A
TYPE: INTEGER
DIMENSION: Scalar
ATTRIBUTES: INTENT(IN)
OUTPUTS:
EQOF: Integer flag indicating end-of-file status for the

LBLRTM format file after the read. Valid return values

are defined in the LBLRTM_Parameters module.

If == LBLRTM_FILE_EOF: End-0f-File has been reached.
The file is then closed.

== LBLRTM_FILE_OK: No EOF or EOL condition. The
next read should be the panel
data.
== LBLRTM_FILE_UNDEF: An error occurred. The file is
closed.
UNITS: N/A

32

TYPE: INTEGER
DIMENSION: Scalar
ATTRIBUTES: INTENT(OUT)

OPTIONAL INPUTS:

Double_Panel: Set this logical flag to indicate a double-panel file.

If == .FALSE., the file is assumed to be single panel. [DEFAULT]
== .TRUE., the file is assumed to be double panel.

If not specified, default is .FALSE.
UNITS: N/A
TYPE: LOGICAL
DIMENSION: Scalar
ATTRIBUTES: INTENT(IN), OPTIONAL

Quiet: Set this logical argument to suppress INFORMATION
messages being printed to stdout
If == .FALSE., INFORMATION messages are OUTPUT [DEFAULT].
== .TRUE., INFORMATION messages are SUPPRESSED.
If not specified, default is .FALSE.
UNITS: N/A
TYPE: LOGICAL
DIMENSION: Scalar
ATTRIBUTES: INTENT(IN), OPTIONAL

FUNCTION RESULT:

Error_Status: The return value is an integer defining the error status.
The error codes are defined in the Message_Handler module.
If == SUCCESS the LBLRTM panel read was successful

== FAILURE an error occurred

UNITS: N/A
TYPE: INTEGER
DIMENSION: Scalar

SIDE EFFECTS:
If an error occurs or the end-of-file is encountered, the input file is
closed.

A.4.10 LBLRTM Panel _Write interface

NAME:
LBLRTM_Panel_Write

PURPOSE:
Function to write an LBLRTM panel to an LBLRTM format
file.

CALLING SEQUENCE:
Error_Status = LBLRTM_Panel_Write(&
LBLRTM_Panel, &
Fileld , &

33

OBJECTS:
LBLRTM_Panel:

INPUTS:
Fileld:

OPTIONAL INPUTS:
Quiet:

FUNCTION RESULT:
Error_Status:

SIDE EFFECTS:

Quiet = Quiet)

LBLRTM panel object to write to file.
UNITS: N/A

TYPE: LBLRTM_Panel_type
DIMENSION: Scalar

ATTRIBUTES: INTENT(IN)

The unit number for the already open LBLRTM file.
UNITS: N/A

TYPE: INTEGER

DIMENSION: Scalar

ATTRIBUTES: INTENT(IN)

Set this logical argument to suppress INFORMATION

messages being printed to stdout

If == .FALSE., INFORMATION messages are OUTPUT [DEFAULT].
== .TRUE., INFORMATION messages are SUPPRESSED.

If not specified, default is .FALSE.

UNITS: N/A

TYPE: LOGICAL

DIMENSION: Scalar

ATTRIBUTES: INTENT(IN), OPTIONAL

The return value is an integer defining the error status.
The error codes are defined in the Message_Handler module.
If == SUCCESS the LBLRTM panel write was successful

== FAILURE an error occurred
UNITS: N/A
TYPE: INTEGER
DIMENSION: Scalar

If an error occurs, the output file is closed.

34

A.5 Layer Structure

TYPE :: LBLRTM_Layer_type
! Allocation and valid data indicator
LOGICAL :: Is_Allocated .FALSE.
LOGICAL :: Is_Valid .FALSE.
! The panel header
TYPE(LBLRTM_Fhdr_type) :: Header

! Dimensions
INTEGER :: n_Points =0 ! L
INTEGER :: n_Spectra =0 ! N

! Frequency data

REAL(DP) :: Begin_Frequency = 0.0_DP
REAL(DP) :: End_Frequency = 0.0_DP
REAL(FP) :: Frequency_Interval = 0.0_FP

! Spectral data
REAL(FP), ALLOCATABLE :: Spectrum(:,:) ! L x N
END TYPE LBLRTM_Layer_type

Figure A.4: LBLRTM_ Layer_type structure definition.

35

A.5.1 LBLRTM_Layer_Associated interface

NAME:
LBLRTM_Layer_Associated

PURPOSE:
Elemental function to test the status of the allocatable components
of the LBLRTM_Layer object.

CALLING SEQUENCE:
Status = LBLRTM_Layer_Associated(LBLRTM_Layer)

0OBJECTS:
LBLRTM_Layer: Structure which is to have its member’s
status tested.
UNITS: N/A
TYPE: LBLRTM_Layer_type
DIMENSION: Scalar or any rank
ATTRIBUTES: INTENT(IN)

FUNCTION RESULT:
Status: The return value is a logical value indicating if the
object has been allocated.
UNITS: N/A
TYPE: LOGICAL
DIMENSION: Same as input

A.5.2 LBLRTM_ Layer_Create interface

NAME:
LBLRTM_Layer_Create

PURPOSE:
Elemental subroutine to create an instance of an LBLRTM_Layer object.

CALLING SEQUENCE:
CALL LBLRTM_Layer_Create(LBLRTM_Layer, &
LBLRTM_Fhdr , &

n_Spectra)
OBJECTS:
LBLRTM_Layer: LBLRTM_Layer object structure.
UNITS: N/A
TYPE: LBLRTM_Layer_type
DIMENSION: Scalar or any rank
ATTRIBUTES: INTENT(OUT)
INPUTS:
LBLRTM_Fhdr: LBLRTM_Fhdr object for the current Layer.

36

UNITS: N/A

TYPE: LBLRTM_Fhdr_type

DIMENSION: Conformable with LBLRTM_Layer
ATTRIBUTES: INTENT(OUT)

n_Spectra: Number of spectra (or "panels").
Must be > O.
UNITS: N/A
TYPE: INTEGER
DIMENSION: Conformable with LBLRTM_Layer
ATTRIBUTES: INTENT(IN)

A.5.3 LBLRTM Layer DefineVersion interface

NAME:
LBLRTM_Layer_DefineVersion

PURPOSE:
Subroutine to return the version information for the
definition module(s).

CALLING SEQUENCE:
CALL LBLRTM_Layer_DefineVersion(Id)

OUTPUTS:
Id: Character string containing the version Id information for the
definition module(s).
UNITS: N/A
TYPE: CHARACTER (%)

DIMENSION: Scalar
ATTRIBUTES: INTENT(OUT)

A.5.4 LBLRTM_Layer_Destroy interface

NAME:
LBLRTM_Layer_Destroy

PURPOSE:
Elemental subroutine to re-initialize LBLRTM_Layer objects.

CALLING SEQUENCE:
CALL LBLRTM_Layer_Destroy(LBLRTM_Layer)

OBJECTS:

LBLRTM_Layer: Re-initialized LBLRTM_Layer instance.
UNITS: N/A

37

TYPE: LBLRTM_Layer_type
DIMENSION: Scalar or any rank
ATTRIBUTES: INTENT(OUT)

A.5.5 LBLRTM Layer _Frequency interface

NAME:
LBLRTM_Layer_Frequency

PURPOSE:
Subroutine to compute the frequency grid for a valid LBLRTM Layer object.

CALLING SEQUENCE:
CALL LBLRTM_Layer_Frequency(LBLRTM_Layer, Frequency)

OBJECTS:
LBLRTM_Layer: LBLRTM_Layer object to display.
UNITS: N/A
TYPE: LBLRTM_Layer_type
DIMENSION: Scalar
ATTRIBUTES: INTENT(IN)
OUTPUTS:
Frequency: Frequency grid for the current LBLRTM Layer object.
UNITS: Inverse centimetres (cm™-1)
TYPE: REAL (DP)

DIMENSION: Rank-1
ATTRIBUTES: INTENT(OUT), ALLOCATABLE

A.5.6 LBLRTM Layer_Inspect interface

NAME:
LBLRTM_Layer_Inspect

PURPOSE:
Subroutine to print the contents of an instance of an LBLRTM_Layer
object to stdout.

CALLING SEQUENCE:
CALL LBLRTM_Layer_Inspect(LBLRTM_Layer)

0BJECTS:
LBLRTM_Layer: LBLRTM_Layer object to display.
UNITS: N/A
TYPE: LBLRTM_Layer_type

DIMENSION: Scalar

38

ATTRIBUTES: INTENT(IN)

A.5.7 LBLRTM_Layer_IsValid interface

NAME:
LBLRTM_Layer_IsValid

PURPOSE:
Elemental function to test if the LBLRTM_Layer object contains

valid data.

CALLING SEQUENCE:
Status = LBLRTM_Layer_IsValid(LBLRTM_Layer)

OBJECTS:
LBLRTM_Layer: Instance which is to have its status tested.
UNITS: N/A
TYPE: LBLRTM_Layer_type

DIMENSION: Scalar or any rank
ATTRIBUTES: INTENT(IN)

FUNCTION RESULT:
Status: The return value is a logical value indicating
if the object contains valid data.
UNITS: N/A
TYPE: LOGICAL
DIMENSION: Same as input

A.5.8 LBLRTM_Layer_SetValid interface

NAME:
LBLRTM_Layer_SetValid

PURPOSE:
Elemental subroutine to mark an instance of an LBLRTM_Layer object
as containing valid data.

Valid flag is set only if the LBLRTM_Layer object is allocated AND
if the embedded LBLRTM_Fhdr object is also valid.

CALLING SEQUENCE:
CALL LBLRTM_Layer_SetValid(LBLRTM_Layer)

OBJECTS:

LBLRTM_Layer: Instance which is to have its validity set.
UNITS: N/A

39

TYPE: LBLRTM_Layer_type
DIMENSION: Scalar or any rank
ATTRIBUTES: INTENT(IN)

A.5.9 LBLRTM Layer_IOVersion interface

NAME:
LBLRTM_Layer_IOVersion

PURPOSE:
Subroutine to return the version information for the module.

CALLING SEQUENCE:
CALL LBLRTM_Layer_IOVersion(Id)

OUTPUTS:
Id: Character string containing the version Id information for the
module.
UNITS: N/A
TYPE: CHARACTER (%)

DIMENSION: Scalar
ATTRIBUTES: INTENT(QUT)

A.5.10 LBLRTM Layer_Read interface

NAME:
LBLRTM_Layer_Read

PURPOSE:
Function to read an LBLRTM Layer from an LBLRTM format
file.

CALLING SEQUENCE:
Error_Status = LBLRTM_Layer_Read(&
LBLRTM_Layer, &

Fileld , &
EQF , &
Double_Panel = Double_Panel, &
Quiet = Quiet)
OBJECTS:
LBLRTM_Layer: LBLRTM Layer object to hold the data.
UNITS: N/A
TYPE: LBLRTM_Layer_type

DIMENSION: Scalar
ATTRIBUTES: INTENT(OUT)

40

INPUTS:
FileId:

OUTPUTS:
EQF:

OPTIONAL INPUTS:

Double_Panel:

Quiet:

FUNCTION RESULT:

Error_Status:

SIDE EFFECTS:

The unit number for the already open LBLRTM file.
UNITS: N/A

TYPE: INTEGER
DIMENSION: Scalar
ATTRIBUTES: INTENT(IN)

Integer flag indicating end-of-file status for the
LBLRTM format file after the read. Valid return values
are defined in the LBLRTM_Parameters module.

If == LBLRTM_FILE_EOF: End-0f-File has been reached.
The file is then closed.

No EOF or EOL condition. The
next read should be the panel

LBLRTM_FILE_OK:

data.
== LBLRTM_FILE_UNDEF: An error occurred. The file is
closed.
UNITS: N/A
TYPE: INTEGER
DIMENSION: Scalar
ATTRIBUTES: INTENT(OQUT)

Set this logical argument to indicate a double-panel file.

If == .FALSE., the file is assumed to be single panel [DEFAULT].
== .TRUE., the file is assumed to be double panel.

If not specified, default is .FALSE.

UNITS: N/A

TYPE: LOGICAL

DIMENSION: Scalar

ATTRIBUTES: INTENT(IN), OPTIONAL

Set this logical flag to suppress INFORMATION

messages being printed to stdout

If == .FALSE., INFORMATION messages are OUTPUT [DEFAULT].
== .TRUE., INFORMATION messages are SUPPRESSED.

If not specified, default is .FALSE.

UNITS:
TYPE:
DIMENSION:

N/A
LOGICAL
Scalar

ATTRIBUTES: INTENT(IN), OPTIONAL

The return value is an integer defining the error status.
The error codes are defined in the Message_Handler module.
If == SUCCESS the LBLRTM layer read was successful

== FAILURE an error occurred

UNITS: N/A
TYPE: INTEGER
DIMENSION: Scalar

41

If an error occurs or the end-of-file is encountered, the input file is

closed.

A.5.11 LBLRTM Layer_Write interface

NAME:

LBLRTM_Layer_Write

PURPOSE:

Function to write an LBLRTM Layer to an LBLRTM format

file.

CALLING SEQUENCE:
Error_Status

0BJECTS:
LBLRTM_Layer:

INPUTS:
FileId:

OPTIONAL INPUTS:
No_EoL:

Quiet:

LBLRTM_Layer_Write(&
LBLRTM_Layer, &

Fileld , &
No_EoL = No_EoL, &
Quiet = Quiet)

LBLRTM Layer object to write to file.
UNITS: N/A

TYPE: LBLRTM_Layer_type
DIMENSION: Scalar

ATTRIBUTES: INTENT(IN)

The unit number for the already open LBLRTM file.
UNITS: N/A

TYPE: INTEGER

DIMENSION: Scalar

ATTRIBUTES: INTENT(IN)

Set this logical flag to indicate an End-Of-Level (EoL)
marker should NOT be written to the output LBLRTM file.
If == .FALSE., an EoL marker is written [DEFAULT]
== .TRUE., an EoL marker is NOT written
If not specified, default is .FALSE.
UNITS: N/A
TYPE: LOGICAL
DIMENSION: Scalar
ATTRIBUTES: INTENT(IN), OPTIONAL

Set this logical argument to suppress INFORMATION

messages being printed to stdout

If == .FALSE., INFORMATION messages are OUTPUT [DEFAULT].
== .TRUE., INFORMATION messages are SUPPRESSED.

If not specified, default is .FALSE.

UNITS: N/A

42

FUNCTION RESULT:
Error_Status:

SIDE EFFECTS:

TYPE: LOGICAL
DIMENSION: Scalar
ATTRIBUTES: INTENT(IN), OPTIONAL

The return value is an integer defining the error status.
The error codes are defined in the Message_Handler module.
If == SUCCESS the LBLRTM layer write was successful

== FAILURE an error occurred
UNITS: N/A
TYPE: INTEGER
DIMENSION: Scalar

If an error occurs, the output file is closed.

43

A.6 File Structure

TYPE :: LBLRTM_File_type
! Allocation and valid data indicator

LOGICAL :: Is_Allocated = .FALSE.
LOGICAL :: Is_Valid = .FALSE.
! Dimensions

INTEGER :: n_Layers =0 ! K

! The layer data
TYPE(LBLRTM_Layer_type), ALLOCATABLE :: Layer(:)
END TYPE LBLRTM_File_type

Figure A.5: LBLRTM_File_type structure definition.

44

A.6.1 LBLRTM File_Associated interface

NAME:
LBLRTM_File_Associated

PURPOSE:
Elemental function to test the status of the allocatable components
of the LBLRTM_File object.

CALLING SEQUENCE:
Status = LBLRTM_File_Associated(LBLRTM_File)

OBJECTS:
LBLRTM_File: Structure which is to have its member’s
status tested.
UNITS: N/A
TYPE: LBLRTM_File_type

DIMENSION: Scalar or any rank
ATTRIBUTES: INTENT(IN)

FUNCTION RESULT:
Status: The return value is a logical value indicating if the
object has been allocated.
UNITS: N/A
TYPE: LOGICAL
DIMENSION: Same as input

A.6.2 LBLRTM File Create interface

NAME:
LBLRTM_File_Create

PURPOSE:
Elemental subroutine to create an instance of an LBLRTM_File object.

CALLING SEQUENCE:
CALL LBLRTM_File_Create(LBLRTM_File, &

n_Layers)
0BJECTS:
LBLRTM_File: LBLRTM_File object structure.
UNITS: N/A
TYPE: LBLRTM_File_type
DIMENSION: Scalar or any rank
ATTRIBUTES: INTENT(OUT)
INPUTS:
n_Layers: Number of layers of spectral data.

Must be > O.

UNITS: N/A

TYPE: INTEGER

DIMENSION: Conformable with LBLRTM_File
ATTRIBUTES: INTENT(IN)

A.6.3 LBLRTM File DefineVersion interface

NAME:
LBLRTM_File_DefineVersion

PURPOSE:
Subroutine to return the version information for the
definition module(s).

CALLING SEQUENCE:
CALL LBLRTM_File_DefineVersion(Id)

OUTPUTS:
Id: Character string containing the version Id information for the
definition module(s).
UNITS: N/A
TYPE: CHARACTER (%)

DIMENSION: Scalar
ATTRIBUTES: INTENT(QUT)

A.6.4 LBLRTM_File_Destroy interface

NAME:
LBLRTM_File_Destroy

PURPOSE:
Elemental subroutine to re-initialize LBLRTM_File objects.

CALLING SEQUENCE:
CALL LBLRTM_File_Destroy(LBLRTM_File)

OBJECTS:
LBLRTM_File: Re-initialized LBLRTM_File instance.
UNITS: N/A
TYPE: LBLRTM_File_type

DIMENSION: Scalar or any rank
ATTRIBUTES: INTENT(OUT)

46

A.6.5 LBLRTM_File_Inspect interface

NAME:
LBLRTM_File_Inspect

PURPOSE:

Subroutine to print the contents of an instance of an LBLRTM_File
object to stdout.

CALLING SEQUENCE:
CALL LBLRTM_File_Inspect(LBLRTM_File)

0OBJECTS:
LBLRTM_File: LBLRTM_File object to display.
UNITS: N/A
TYPE: LBLRTM_File_type

DIMENSION: Scalar
ATTRIBUTES: INTENT(IN)

A.6.6 LBLRTM File_IsValid interface

NAME:
LBLRTM_File_IsValid

PURPOSE:
Elemental function to test if the LBLRTM_File object contains
valid data.

CALLING SEQUENCE:
Status = LBLRTM_File_IsValid(LBLRTM_File)

OBJECTS:
LBLRTM_File: Instance which is to have its status tested.
UNITS: N/A
TYPE: LBLRTM_File_type

DIMENSION: Scalar or any rank
ATTRIBUTES: INTENT(IN)

FUNCTION RESULT:
Status: The return value is a logical value indicating
if the object contains valid data.
UNITS: N/A
TYPE: LOGICAL
DIMENSION: Same as input

47

A.6.7 LBLRTM_File_SetValid interface

NAME:
LBLRTM_File_SetValid

PURPOSE:
Elemental subroutine to mark an instance of an LBLRTM_File object
as containing valid data.

Valid flag is set only if the LBLRTM_File object is allocated AND
if the embedded LBLRTM_Layer object array is also valid.

CALLING SEQUENCE:
CALL LBLRTM_File_SetValid(LBLRTM_File)

0BJECTS:
LBLRTM_File: Instance which is to have its validity set.
UNITS: N/A
TYPE: LBLRTM_File_type

DIMENSION: Scalar or any rank
ATTRIBUTES: INTENT(IN)

A.6.8 LBLRTM File _I0OVersion interface

NAME:
LBLRTM_File_IOVersion

PURPOSE:
Subroutine to return the version information for the module.

CALLING SEQUENCE:
CALL LBLRTM_File_IOVersion(Id)

OUTPUTS:
Id: Character string containing the version Id information for the
module.
UNITS: N/A
TYPE: CHARACTER (%)

DIMENSION: Scalar

ATTRIBUTES: INTENT(QUT)

A.6.9 LBLRTM File_Read interface

NAME:
LBLRTM_File_Read

48

PURPOSE:
Function to read an LBLRTM format file.

CALLING SEQUENCE:
Error_Status = LBLRTM_File_Read(&
LBLRTM_File , &
Filename , &
n_Layers = n_Layers , &
Double_Panel Double_Panel, &
Quiet Quiet)

0BJECTS:
LBLRTM_File: LBLRTM File object to hold the data.
UNITS: N/A
TYPE: LBLRTM_File_type
DIMENSION: Scalar
ATTRIBUTES: INTENT(OUT)

INPUTS:
Filename: The name of the LBLRTM file to read
UNITS: N/A
TYPE: CHARACTER (%)
DIMENSION: Scalar
ATTRIBUTES: INTENT(IN)

OPTIONAL INPUTS:
n_Layers: Number of layers of spectral data to read.
If not specified, the number of layers read is 1.
UNITS: N/A
TYPE: INTEGER
DIMENSION: Scalar
ATTRIBUTES: INTENT(IN), OPTIONAL

Double_Panel: Set this logical argument to indicate a double-panel file.
If == .FALSE., the file is assumed to be single panel. [DEFAULT]
== .TRUE., the file is assumed to be double panel.
If not specified, default is .FALSE.
UNITS: N/A
TYPE: LOGICAL
DIMENSION: Scalar
ATTRIBUTES: INTENT(IN), OPTIONAL

Quiet: Set this logical argument to suppress INFORMATION
messages being printed to stdout
If == .FALSE., INFORMATION messages are OUTPUT [DEFAULT].
== .TRUE., INFORMATION messages are SUPPRESSED.
If not specified, default is .FALSE.
UNITS: N/A
TYPE: LOGICAL
DIMENSION: Scalar
ATTRIBUTES: INTENT(IN), OPTIONAL

FUNCTION RESULT:

49

Error_Status:

The return value is an integer defining the error status.
The error codes are defined in the Message_Handler module.
If == SUCCESS the LBLRTM file read was successful

== FAILURE an error occurred
UNITS: N/A
TYPE: INTEGER
DIMENSION: Scalar

A.6.10 LBLRTM File Write interface

NAME:

LBLRTM_File_Write

PURPOSE:

Function to write an LBLRTM format file.

CALLING SEQUENCE:
Error_Status

OBJECTS:
LBLRTM_File:

INPUTS:
Filename:

OPTIONAL INPUTS:
Quiet:

FUNCTION RESULT:
Error_Status:

LBLRTM_File_Write(&
LBLRTM_File , &
Filename , &
Quiet = Quiet)

LBLRTM File object to write to file.
UNITS: N/A

TYPE: LBLRTM_File_type
DIMENSION: Scalar

ATTRIBUTES: INTENT(IN)

The name of the LBLRTM file to write.
UNITS: N/A

TYPE: CHARACTER (*)

DIMENSION: Scalar

ATTRIBUTES: INTENT(IN)

Set this logical argument to suppress INFORMATION

messages being printed to stdout

If == .FALSE., INFORMATION messages are OUTPUT [DEFAULT].
== .TRUE., INFORMATION messages are SUPPRESSED.

If not specified, default is .FALSE.

UNITS: N/A

TYPE: LOGICAL

DIMENSION: Scalar

ATTRIBUTES: INTENT(IN), OPTIONAL

The return value is an integer defining the error status.
The error codes are defined in the Message_Handler module.

50

If == SUCCESS the LBLRTM file write was successful
== FATILURE an error occurred

UNITS: N/A

TYPE: INTEGER

DIMENSION: Scalar

ol

A.7 LBLRTM Utility Module

A.7.1 LBLRTM EoF Message interface

NAME:
LBLRTM_EoF _Message

PURPOSE:
Pure function to return a message describing the LBLRTM file EOF status.

CALLING SEQUENCE:
msg = LBLRTM_EoF _Message(eof)

INPUTS:
eof: LBLRTM file EoF status specifier.
UNITS: N/A
TYPE: INTEGER

DIMENSION: Scalar
ATTRIBUTES: INTENT(IN)

FUNCTION RESULT:

msg: Character string describing the LBLRTM file EoF status.
UNITS: N/A
TYPE: CHARACTER (%)

DIMENSION: Scalar

A.7.2 LBLRTM_EoL_Write interface

NAME:
LBLRTM_EoL_Write

PURPOSE:
Function to write an end-of-layer (EoL) marker to an output
LBLRTM format file.

CALLING SEQUENCE:
Error_Status = LBLRTM_EoL_Write(FileID)

INPUTS:
Fileld: The unit number for the already open LBLRTM file.
UNITS: N/A
TYPE: INTEGER

DIMENSION: Scalar
ATTRIBUTES: INTENT(IN)

FUNCTION RESULT:
Error_Status: The return value is an integer defining the error status.
The error codes are defined in the Message_Handler module.
If == SUCCESS the LBLRTM file EQOL write was successful

52

== FATILURE an unrecoverable error occurred
UNITS: N/A
TYPE: INTEGER
DIMENSION: Scalar

SIDE EFFECTS:
If an error occurs writing to the file, it is closed.

A.7.3 LBLRTM File _Open interface

NAME:
LBLRTM_File_Open

PURPOSE:
Function to open an LBLRTM format data file. If the file is opened for
reading, then a check is performed to determine if the file is of the
right byte-sex.

CALLING SEQUENCE:
Error_Status = LBLRTM_File_Open(&
Filename, &

FileId , &
For_Output = For_Output, &
Quiet = Quiet)
INPUTS:
FileName: The LBLRTM formay datafile to open.
UNITS: N/A
TYPE: INTEGER
DIMENSION: Scalar
ATTRIBUTES: INTENT(IN)
OUTPUTS:
FileId: The unit number for file access.
UNITS: N/A
TYPE: INTEGER

DIMENSION: Scalar
ATTRIBUTES: INTENT(IN)

OPTIONAL INPUTS:
For_QOutput: Set this logical argument to open a new file for

writing. Default action is to open an existing file

for read access.

If == .FALSE., existing file is opened for READ access [DEFAULT]
ACTION="READ’, STATUS=’0LD’

== .TRUE. , new file is opened for WRITE access.

ACTION="WRITE’, STATUS=’REPLACE’

If not specified, the default is .FALSE.

NOTE: If the file already exists and it is opened with

this keyword set to .TRUE., the file is OVERWRITTEN.
UNITS: N/A

93

FUNCTION RESULT:

Quiet:

TYPE: LOGICAL
DIMENSION: Scalar
ATTRIBUTES: INTENT(IN), OPTIONAL

Set this logical argument to suppress INFORMATION

messages being printed to stdout

If == .FALSE., INFORMATION messages are OUTPUT [DEFAULT].
== .TRUE., INFORMATION messages are SUPPRESSED.

If not specified, default is .FALSE.

UNITS: N/A

TYPE: LOGICAL

DIMENSION: Scalar

ATTRIBUTES: INTENT(IN), OPTIONAL

Error_Status: The return value is an integer defining the error status.

The error codes are defined in the Message_Handler module.
If == SUCCESS the LBLRTM file open was successful
== FAILURE an unrecoverable error occurred
UNITS: N/A
TYPE: INTEGER
DIMENSION: Scalar

A.7.4 LBLRTM UtilityVersion interface

NAME:

LBLRTM_UtilityVersion

PURPOSE:
Subroutine to return the version information for the module.

CALLING SEQUENCE:

CALL LBLRTM_UtilityVersion(Id)

OUTPUTS:

Id:

Character string containing the version Id information for the
module.

N/A
CHARACTER (%)

DIMENSION: Scalar
ATTRIBUTES: INTENT(OUT)

A.7.5 LBLRTM_n_Points interface

NAME:

LBLRTM_n_Points

54

PURPOSE:
Pure function to compute the number of points in an LBLRTM spectrum.

CALLING SEQUENCE:
n_Points = LBLRTM_n_Points(f1, f2, df)

INPUTS:

f1: Beginning frequency of the spectral data.
UNITS: cm™-1
TYPE: REAL (DP)
DIMENSION: Scalar
ATTRIBUTES: INTENT(IN)

£2: Ending frequency of the spectral data.
UNITS: cm™-1
TYPE: REAL (DP)
DIMENSION: Scalar
ATTRIBUTES: INTENT(IN)

df: Frequency spacing of the spectral data.

The value of the data type kind, FP, is can
indicate either single or double precision
depending on how the Type_Kinds.fpp module was
preprocessed for compilation.

UNITS: cm”-1

TYPE: REAL (FP)

DIMENSION: Scalar

ATTRIBUTES: INTENT(IN)

FUNCTION RESULT:
n_Points: The return value is an integer containing the
number of points in the spectrum.
UNITS: N/A
TYPE: INTEGER
DIMENSION: Scalar

PROCEDURE:
The number of points is calculated from the begin and end frequencies,
f1 and f2, and the frequency interval, df, by:

(£f2 - f1)
n = FLOOR (--------- +1.5)
(df)

	What's Next
	Introduction
	Components
	Conventions
	Naming of Objects and Instances of Objects
	Naming of Definition Modules
	Naming of I/O Modules
	Standard Definition Module Procedures

	How to obtain the LBLRTM I/O library
	How to build the LBLRTM I/O library
	Configuration
	Supported compilers

	Building the library
	Checking the library build
	Installing the library
	Linking to the library
	Uninstalling the library
	Cleaning up
	Feedback and contact information

	How to use the LBLRTM I/O library
	Environment setup in your Fortran program
	Define the LBLRTM File object
	Call the LBLRTM File read function
	Single layer, single panel LBLRTM file
	Single layer, double panel LBLRTM file
	Multiple layer, double panel LBLRTM file

	Inspecting the File object contents
	Accessing the File object contents
	Cleaning up

	Object and procedure interface definitions
	Main LBLRTM I/O Module
	LBLRTMIO_Version interface

	Fhdr Structure
	LBLRTM_Fhdr_DefineVersion interface
	LBLRTM_Fhdr_Destroy interface
	LBLRTM_Fhdr_Inspect interface
	LBLRTM_Fhdr_IsValid interface
	LBLRTM_Fhdr_SetValid interface
	LBLRTM_Fhdr_IOVersion interface
	LBLRTM_Fhdr_Read interface
	LBLRTM_Fhdr_Write interface

	Phdr Structure
	LBLRTM_Phdr_DefineVersion interface
	LBLRTM_Phdr_Destroy interface
	LBLRTM_Phdr_Inspect interface
	LBLRTM_Phdr_IsValid interface
	LBLRTM_Phdr_SetValid interface
	LBLRTM_Phdr_IOVersion interface
	LBLRTM_Phdr_Read interface
	LBLRTM_Phdr_Write interface

	Panel Structure
	LBLRTM_Panel_Associated interface
	LBLRTM_Panel_Create interface
	LBLRTM_Panel_DefineVersion interface
	LBLRTM_Panel_Destroy interface
	LBLRTM_Panel_Inspect interface
	LBLRTM_Panel_IsValid interface
	LBLRTM_Panel_SetValid interface
	LBLRTM_Panel_IOVersion interface
	LBLRTM_Panel_Read interface
	LBLRTM_Panel_Write interface

	Layer Structure
	LBLRTM_Layer_Associated interface
	LBLRTM_Layer_Create interface
	LBLRTM_Layer_DefineVersion interface
	LBLRTM_Layer_Destroy interface
	LBLRTM_Layer_Frequency interface
	LBLRTM_Layer_Inspect interface
	LBLRTM_Layer_IsValid interface
	LBLRTM_Layer_SetValid interface
	LBLRTM_Layer_IOVersion interface
	LBLRTM_Layer_Read interface
	LBLRTM_Layer_Write interface

	File Structure
	LBLRTM_File_Associated interface
	LBLRTM_File_Create interface
	LBLRTM_File_DefineVersion interface
	LBLRTM_File_Destroy interface
	LBLRTM_File_Inspect interface
	LBLRTM_File_IsValid interface
	LBLRTM_File_SetValid interface
	LBLRTM_File_IOVersion interface
	LBLRTM_File_Read interface
	LBLRTM_File_Write interface

	LBLRTM_Utility Module
	LBLRTM_EoF_Message interface
	LBLRTM_EoL_Write interface
	LBLRTM_File_Open interface
	LBLRTM_UtilityVersion interface
	LBLRTM_n_Points interface

