Joint Center for Satellite Data Assimilation

CRTM: v2.1.3 User Guide

June 20, 2013; rev29365

Change History

Date Author Change

2012-06-11 P.van Delst Draft release.

2012-06-14 P.van Delst Draft #2 and #3 release.
2012-06-27 P.van Delst Draft #4 and #5 release.
2012-07-11 P.van Delst Initial release.
2012-11-16 P.van Delst Updated for v2.1.1.
2013-02-13 P.van Delst Updated for v2.1.2.
2013-06-20 P.van Delst Updated for v2.1.3.

Contents

What’s New in v2.1
New Science

New Functionality

Interface Changes

What’s New in v2.1.1

Bug Fixes

Update of sensor coefficient files

What’s New in v2.1.2
Science Updates

Bug Fixes

What’s New in v2.1.3
Science Updates
Update of sensor coefficient files

Bug Fixes

1 Introduction

1.1 Conventions

1.1.1
1.1.2 Naming of Definition Modules
1.1.3 Standard Definition Module Procedures
1.1.4 Naming of Application Modules
1.2 Components
1.2.1 Atmospheric Optics

1.2.2 Surface Optics
1.2.3 Radiative Transfer Solution

Naming of Structure Types and Instances of Structures

xiii
xiii
xiii

Xiv

Xix
Xix

Xix

XX
XX

XX

XXV
XXV
XXV

XXV1

w W W w w N

1.3 Models e e e e

1.4 Design Framework e

How to obtain the CRTM
2.1 CRTIM ftp download site
2.2 Coefficient Data e

How to build the CRTM library

3.1 Build Files e
3.2 Predefined Configuration Files
3.3 Compilation Environment Setup
3.4 Building the library L
3.5 Testing the library oL
3.6 Imstalling the library
3.7 Clean Up o e
3.8 Linking to the library L

How to use the CRTM library

4.1 Access the CRTM module e
4.2 Declare the CRTM structures o 0ttt
4.3 Imitialise the CRTM 0 e
4.3.1 Where are the coefficient data files? L
4.3.2 No clouds or aerosols?
4.3.3 What surface emissivity model?
4.3.4 1 don’t want to process all of the channels!
4.4 Allocate the CRTM arrays o o v i v it s e e e e e e s
4.5 Create the CRTM structures et
4.5.1 Allocation of the Atmosphere structures L.
4.5.2 Allocation of the RTSolution structure
4.5.3 Allocation of the Options structure e
4.6 Fill the CRTM input structures with data
4.6.1 Filling the Atmosphere structure with data
4.6.2 Filling the Surface structure with data
4.6.3 Filling the Geometry structure with data
4.6.4 Filling the Options structure with data
4.6.5 Initialising the K-matrix input and outputs oL
4.7 Call the required CRTM function o

ii

10
10
11
12
12
13

4.7.1 The CRTM Forward model 45

4.7.2 The CRTM K-Matrix model 46
4.7.3 The CRTM Tangent-linear and Adjoint models 47
4.74 The CRTM Aerosol Optical Depth (AOD) functions 47

4.8 Inspect the CRTM output structures 49
4.9 Destroy the CRTM and cleanup o .. o0 49
5 Interface Descriptions 51
5.1 Inmitialisation functions 51
5.1.1 CRTM_Init interface 51

5.2 Main functionso 56
5.2.1 CRTM_Forward interface 56
5.2.2 CRTM_Tangent Linear interface o8
5.2.3 CRTM_Adjoint interface e 60
5.2.4 CRTM.K Matrix interface 63

5.3 Aerosol optical depth functions Lo 66
5.3.1 CRTM_AOD interface e 66
5.3.2 CRTM_AOD_TL interface o o e 68
5.3.3 CRTM_AOD_AD interface o i i it 70
5.3.4 CRTM_AOD K interface e 72

5.4 Destruction functions L 74
5.4.1 CRTMDestroy interface e e

5.5 Utility functions L e 75
5.5.1 CRTM _Versiom interface e 75
5.5.2 CRTM_IsInitialized interface 75
5.5.3 CRTM_LifeCycleVersion interface 76
5.5.4 CRTM_Forward Versiom interface 76
5.5.5 CRTM_Tangent_Linear Versiom interface 76
5.5.6 CRTM_Adjoint_Versiom interface 7
5.5.7 CRTM K Matrix Version interface 77
5.5.8 CRTM_AOD_Versiom interface 78
Bibliography 79

iii

A Structure and procedure interface definitions 80

A.1 ChannelInfo Structure 0 i i 81
A.1.1 CRTM_ChannellInfo_Associated interface 82
A.1.2 CRTM_ChannelInfo_Channels interface 82
A.1.3 CRTM_ChannelInfo DefineVersion interface 83
A.1.4 CRTM_ChannellInfo Destroy interface 83
A.1.5 CRTM_ChannellInfo_Inspect interface 84
A.1.6 CRTM_ChannellInfo Subset interface 84
A.1.7 CRTM_ChannelInfo.n Channels interface 85

A2 Atmosphere Structure 87
A.2.1 CRTM_Atmosphere_AddLayerCopy interface 88
A.2.2 CRTM_Atmosphere_Associated interface 88
A.2.3 CRTM_Atmosphere Compare interface 89
A.2.4 CRTM_Atmosphere Create interface, 90
A.2.5 CRTM_Atmosphere DefineVersion interface 91
A.2.6 CRTM_Atmosphere Destroy interface 91
A.2.7 CRTM_Atmosphere_InquireFile interface 91
A.2.8 CRTM_Atmosphere Inspect interface 92
A.2.9 CRTM_Atmosphere_IsValidinterface 93
A.2.10 CRTM_Atmosphere ReadFile interface 93
A.2.11 CRTM_Atmosphere_SetLayers interface 95
A.2.12 CRTM_Atmosphere_WriteFile interface 96
A.2.13 CRTM_Atmosphere Zero interface 97
A.2.14 CRTM_Get_AbsorberIdx interface 98
A.2.15 CRTM_Get_Pressurelevelldx interface 98

A3 Cloud Structure. o e e 100
A.3.1 CRTM_Cloud_AddLayerCopy interface 101
A.3.2 CRTM_Cloud_Associated interface 101
A.3.3 CRTM_Cloud Compare interface. it 102
A.3.4 CRTM_Cloud Create interface 103
A.3.5 CRTM_Cloud DefineVersion interface 103
A.3.6 CRTM_Cloud Destroy interface. 104
A.3.7 CRTM_Cloud_InquireFile interface 104
A.3.8 CRTM_Cloud_Inspect interface. it 105
A.3.9 CRTM_Cloud_IsValidinterface. 105

iv

A4

A5

A6

A.3.10 CRTM_Cloud_ReadFile interface . 106

A.3.11 CRTM_Cloud_SetLayers interface 107
A.3.12 CRTM_Cloud WriteFile interface 108
A.3.13 CRTM_Cloud _Zero interface 109
Aerosol Structure oL L 111
A.4.1 CRTM_Aerosol_AddLayerCopy interface 112
A.4.2 CRTM_Aerosol _Associated interface 112
A.4.3 CRTM_Aerosol Compare interface, 113
A.4.4 CRTM_Aerosol Create interface 114
A.4.5 CRTM_Aerosol DefineVersionm interface 114
A.4.6 CRTM_Aerosol Destroy interface 115
A.A47 CRTM_Aerosol_InquireFile interface 115
A.4.8 CRTM_Aerosol_Inspect interface 116
A.4.9 CRTM_Aerosol_IsValid interface 116
A.4.10 CRTM_Aerosol ReadFile interface 117
A.4.11 CRTM_Aerosol_SetLayers interface 118
A.4.12 CRTM_Aerosol WriteFile interface 119
A.4.13 CRTM_Aerosol Zero interface L 120
Surface Structure L e 122
A.5.1 CRTIM_Surface_Associated interface 123
A.5.2 CRTM_Surface Compare interface, 123
A.5.3 CRTM_Surface_CoverageType interface 124
A.5.4 CRTM_Surface Create interface 124
A.5.5 CRTM_Surface DefineVersionm interface 125
A.5.6 CRTIM_Surface Destroy interface 125
A.5.7 CRTM Surface InquireFile interface 126
A.5.8 CRTM_Surface_Inspect interface 127
A.5.9 CRTM_Surface_IsCoverageValid interface 127
A.5.10 CRTM_Surface_IsValid interface 128
A.5.11 CRTM_Surface ReadFile interface 129
A.5.12 CRTM_Surface WriteFile interface 130
A.5.13 CRTM_Surface_Zero interface 131
SensorData Structure e 133
A.6.1 CRTM_SensorData_Associated interface 134
A.6.2 CRTM_SemnsorData Compare interface 134

AT

A8

A.6.3 CRTM_SensorData_Create interface 135

A.6.4 CRTM_SensorData DefineVersion interface 135
A.6.5 CRTM_SemnsorData Destroy interface 136
A.6.6 CRTM_SensorData InquireFile interface 136
A.6.7 CRTM_SensorData Inspect interface 137
A.6.8 CRTM_SemsorData IsValidinterface 137
A.6.9 CRTM_ SensorData ReadFile interface 138
A.6.10 CRTM_SensorData WriteFile interface 139
A.6.11 CRTM_SensorData Zero interface 141
Geometry Structure L 142
A.7.1 CRTM_Geometry_Associated interface 143
A.7.2 CRTM_Geometry Compare interface, 143
A.7.3 CRTIM Geometry Create interface 144
A.7.4 CRTM_Geometry DefineVersion interface 144
A.7.5 CRTM_Geometry Destroy interface 145
A.7.6 CRTM_Geometry_GetValue interface 145
A.7.7 CRTM_Geometry_InquireFile interface 147
A.7.8 CRIM Geometry Imspect interface 148
A.7.9 CRTIM_Geometry_IsValidinterface 149
A.7.10 CRTM_Geometry ReadFile interface 149
A.7.11 CRTM_Geometry ReadRecord interface, 151
A.7.12 CRTM_Geometry_SetValue interface 151
A.7.13 CRTM_Geometry WriteFile interface, 154
A.7.14 CRTM_Geometry_WriteRecord interface, 155
RTSolution Structure o o i e e e 156
A.8.1 CRTMRTSolution Associated interface 157
A.8.2 CRTM_RTSolution Compare interface 157
A.8.3 CRTM_RTSolution Create interface 158
A.8.4 CRTM_RTSolution DefineVersion interface 158
A.8.5 CRTM_RTSolution Destroy interface 159
A.8.6 CRTMRTSolution InquireFile interface 159
A.8.7 CRTM_RTSolution_Imnspect interface 160
A.8.8 CRTM_RTSolution ReadFile interface 161
A.8.9 CRTMRTSolution WriteFile interface 162
A.8.10 CRTM_RTSolution Zero interface 163

vi

A9 Optioms Structure L e 164

A.9.1 CRTM Optiomns_Associatedinterface 166
A.9.2 CRTM.Optioms_Create interface 166
A.9.3 CRTM_Options DefineVersionm interface 167
A.9.4 CRTM Optiomns Destroy interface 167
A.9.5 CRTM_Optiomns_InquireFile interface 168
A.9.6 CRTM Options_Inspect interface 168
A.9.7 CRTM Optioms_IsValid interface 169
A.9.8 CRTM_Options_ReadFile interface 169
A.9.9 CRTM Options WriteFile interface 171
A.10 SSU_Input Structure o it i e 173
A.10.1 SSU_Input_CellPressureIsSet interface 174
A.10.2 SSU_Input DefineVersion interface 174
A.10.3 SSU_Input_GetValue interface. 175
A.10.4 SSU_Input_Inspect interface 176
A.10.5 SSU_Input_IsValid interface 176
A.10.6 SSU_Input_ReadFile interface. 177
A.10.7 SSU_Input_SetValue interface. 178
A.10.8 SSU_Input_ValidRelease interface 179
A.10.9 SSU_Input_WriteFile interface L 180
A11 Zeeman _Input Structure o it e e 182
A.11.1 Zeeman_Input_DefineVersion interface, 183
A.11.2 Zeeman Input_GetValue interface 183
A.11.3 Zeeman_Input_Inspect interface L 184
A.11.4 Zeeman Input_IsValid interface 184
A.11.5 Zeeman Input ReadFile interface 185
A.11.6 Zeeman_Input_SetValue interface 186
A.11.7 Zeeman _Input_ValidRelease interface 187
A.11.8 Zeeman Input WriteFile interface o 188

B Valid Sensor Identifiers 190

vii

C Migration Path from REL-2.0.x to REL-2.1 196

C.1

C.2

C.3

CRTM Initialisation: Emissivity/Reflectivity model datafile arguments 196
C.1.1 Old v2.0.x Calling Syntax oot v ittt e 196
C.1.2 New v2.1 Calling Syntax i e 196
CRTM Surface: Infrared/Visible Land surface type specification 197
C.2.1 Old v2.0.x Assignment Syntax Lo 197
C.2.2 New v2.1 Assignment Syntax oo v vt i e 197
CRTM Surface: Microwave Land surface type specification 198
C.3.1 OIld v2.0.x Assignment Syntax 198
C.3.2 New v2.1 Assignment SyNtax« .o v v v v vttt e e 198

viii

List of Figures

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
0.10
0.11
0.12
0.13
0.14
0.15
0.16
0.17
0.18
0.19
0.20

1.1

2.1

4.1
4.2
4.3

v2.1.0:
v2.1.0:
v2.1.0:
v2.1.0:
v2.1.0:
v2.1.0:
v2.1.2:
v2.1.2:
v2.1.2:
v2.1.2:
v2.1.2:
v2.1.2:
v2.1.2:
v2.1.2:
v2.1.3:
v2.1.3:
v2.1.3:
v2.1.3:
v2.1.3:
v2.1.3:

Effect of FASTEM changes in AMSU-A channel 1
Effect of FASTEM changes in AMSU-A channel 2
Effect of FASTEM changes in AMSU-A channel 3
Effect of FASTEM changes in AMSU-A channel 15.
Effect of Microwave Land Emissivity changes in NOAA-18 AMSU-A channels 1-3
Effect of NLTE changes in affected MetOp-A TASI channels
Effect of FASTEM changes in AMSU-A channel 1
Effect of FASTEM changes in AMSU-A channel 1
Effect of FASTEM changes in AMSU-A channel 2
Effect of FASTEM changes in AMSU-A channel 2
Effect of FASTEM changes in AMSU-A channel 3
Effect of FASTEM changes in AMSU-A channel 3
Effect of FASTEM changes in AMSU-A channel 15.
Effect of FASTEM changes in AMSU-A channel 15.
Impact of LBLRTM v12.1 update on MetOp-A TAST
Impact of LBLRTM v12.1 update on NPP CrIS
Example of emissivity interpolation artifacts
Differences statistics for updated Nalli model emissivity data
IASI 900cm™ channel € and T differences due to Nalli model emissivity update

IASI 820cm™ channel € and T differences due to Nalli model emissivity update

Flowchart of the CRTM Forward and K-Matrix models.

The CRTM coefficients directory structure

Definition of Geometry sensor scan angle component.

Definition of Geometry sensor zenith angle component.

Definition of Geometry sensor azimuth angle component.

ix

xXxi
Xx1
xxii
xxii
xxiii
xxiii
XXiv
XXiv
XXVii
xxviil
XXix
XXX
XXX1

XXX1i

4.4 Definition of Geometry source zenith angle component. L. 38
4.5 Definition of Geometry source azimuth angle component. 39
4.6 Geometry definitions for equation 4.1. 39
A.1 CRTM_Channellnfo_type structure definition., 81
A.2 CRTM_Atmosphere_type structure definition. 87
A.3 CRTM_Cloud_type structure definition. 100
A.4 CRTM_Aerosol_type structure definition. L 111
A.5 CRTM_Surface_type structure definition. 122
A.6 CRTM_SensorData_type structure definition., 133
A7 CRTM_Geometry_type structure definition. L oo 142
A.8 CRTM_RTSolution_type structure definition. 156
A.9 CRTM_Options_type structure definition. 165
A.10 SSU_Input_type structure definition. 173
A.11 Zeeman_Input_type structure definition. 182

List of Tables

1.1

3.1

4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.8
4.9
4.10
4.11
4.12
4.13
4.14
4.15
4.16
4.17
4.18
4.19

4.20
4.21
4.22

Default action procedures available in structure definition modules. 2
Supplied configuration files for the CRTM library and test/example program build. 9
Choices available for setup of the various emissivity/reflectivity models during CRTM initialisation. 17
CRTM Atmosphere structure component description. 23
CRTM Cloud structure component description. o 23
CRTM Aerosol structure component description. L oL 23
CRTM Atmosphere structure valid Climatology definitions.. 24
CRTM Atmosphere structure valid Absorber_ID definitions. 24
CRTM Atmosphere structure valid Absorber Units definitions. 24
CRTM Cloud structure valid Type definitions. 25
CRTM Aerosol structure valid Type definitions and effective radii. 25
CRTM Surface structure component description. 28
Number of valid surface types available for the different surface and spectral categories. 29
Surface type names and their index value for the NPOESS land surface classification scheme. . . 30
Surface type names and their index value for the USGS land surface classification scheme. 31
Surface type names and their index value for the IGBP land surface classification scheme 32
Soil type textures and descriptions, along with their index value for the GFS classification scheme. 33
Vegetation type names and their index value for the GFS classification scheme. 33
Water, snow, and ice surface subtypes and their index value., 34
CRTM SensorData structure component description. 35
Microwave sensors and their associated WMO sensor identifiers for which the CRTM has empirical

snow and ice emissivity models. L Lo 35
CRTM Geometry structure component description. L. 36
CRTM Options structure component description 40
CRTM SSU_Input structure component description 43

xi

4.23 CRTM Zeeman_Input structure component description,

4.24 CRTM RTSolution structure component description

B.1 CRTM sensor identifiers and the availability of ODA

xii

S or ODPS TauCoeff files

What's New in v2.1

New Science

Updated microwave sea surface emissivity model The FASTEM4/5 microwave sea surface emissivity mod-
els have been implemented. FASTEMS is the default (via a file loaded during initialisation) and FASTEM4
[Liu et al., 2011] can be selected by specifying the appropriate data file during CRTM initialisation. The
previous model, a combination of FASTEM1 [English and Hewison, 1998] and a low frequency model
[Kazumori et al., 2008], can still be invoked via the options input to the CRTM functions. An indication
of the differences between the FASTEM5/4/1 microwave sea surface emissivity models for some AMSU-A
channels (NOAA-15 through MetOp-A) are shown in figures 0.1 to 0.4.

Updated microwave land surface emissivity model The microwave land emissivity model now uses more
information about the surface characteristics, specifically soil and vegetation types as well as the leaf area
index (LAI), to compute the emissivity. An indication of the impact of the updated microwave land surface
emissivity model for some NOAA-18 AMSU-A channels is shown in figure 0.5.

Non-LTE for hyperspectral infrared sensors A model to correct daytime radiances for the non-LTE effect
in the shortwave infrared channels has been implemented [Chen et al., 2013]. Currently the correction is
applied only to the hyperspectral infrared sensors; AIRS (Aqua), TASI (MetOp-A/B), and CrIS (Suomi
NPP). An indication of the impact of including the non-LTE correction for some affected MetOp-A TASI
channels is shown in figure 0.6.

Successive Order of Interaction (SOI) radiative transfer algorithm An alternative radiative transfer (RT)
solution algorithm [Heidinger et al., 2006] has been implemented and can be selected for use via the options
input to the CRTM functions. The default RT solver still remains the Advanced Doubling-Adding (ADA)
algorithm [Liu and Weng, 2006]'.

New Functionality

Aerosol optical depth functions Separate functions to compute just the aerosol optical depth have been
implemented. The new main level forward, tangent-linear, adjoint, and K-matrix functions are CRTM_AOD (),
CRTM_AOD_TL (), CRTM_AQOD_AD(), and CRTM_AOD K () respectively. See section 5.3 for the function interfaces.

Channel subsetting To allow users to select which channels of a sensor will be processed, a channel subsetting
function has been added. This subsetting operates on the ChannelInfostructure and is invoked by passing
the list of required channel numbers to a new CRTM_ChannelInfo_Subset () function. See section 4.3.4 for
usage examples and section A.1.6 for the function interface.

IThe ADA implementation in the CRTM uses the Matrix Operator Method (MOM) [Liu and Ruprecht, 1996] for calculating
layer quantities

xiii

Number of streams option For scattering atmospheres the current method to determine the number of
streams to be employed in the radiative transfer calculation is based upon the Mie parameter. Gener-
ally this methodology yields a higher number of streams than is necessary. A better “stream selection”
method is under development and is slated for the v2.2 CRTM release. Part of this work led to the imple-
mentation of an n_Streams option - that is, the user can explicitly state the number of streams they wish
to use for scattering calculations and override any value determined internally. The user-define number of
streams is set via the options input to the CRTM functions.

Scattering switch option for clouds and aerosols This implements a user-selectable switch to “skip” the
scattering computations and only compute the cloud and aerosol absorption component when clouds and
aerosols are present. The scattering switch is set via the options input to the CRTM functions.

Ajircraft instrument capability The ability to simulate an aircraft instrument has been implemented in the
CRTM. The user indicates that the calculation is for an aircraft instrument by specifying the flight level
pressure in the options input to the CRTM functions. Note, however, that no spectral or transmittance co-
efficients are available for aircraft instruments. If you wish to run the CRTM for a particular aircraft sensor
(microwave, infrared or visible) email the CRTM developers at ncep.list.emc.jcsda_crtm.support@noaa.gov.

Options structure I/O Previously, the CRTM Optionsstructure was different from the other user accessible
CRTM structures (e.g. Atmosphere, Surface, Geometry, etc) in that there were no means to write and read
the structure to/from file. This oversight has been corrected. See section A.9 for the function interfaces.

Interface Changes

Surface type specification changes The specification of surface type in the CRTM surface structure was
previously hardwired to use the NPOESS land surface classification scheme (infrared and visible spectral
regions only). For users that employed a different land surface classification scheme, in particular those
from USGS or IGBP, it meant there was a classification scheme remapping that was required to assign
the “correct” NPOESS surface type for a particular USGS or IGBP surface type. To avoid the need to
do this remapping, the land surface reflectivity data has now been provided in terms of three surface
classification schemes: NPOESS (the default), USGS, and IGBP. These are loaded into the CRTM during
the initialization stage.

Previously land surface type parameters such as SCRUB or BROADLEAF _FOREST were available to refer to a
unique surface type index that was used to reference a look up table of spectral reflectances. Now, however,
the list of allowable surface types can be different based on the classification scheme with which the CRTM
was initialized, and thus the numeric index for a surface type in the list is no longer unique to that surface
type. This means there can no longer be a list of pre-specified parameterized surface types like there was
with v2.0.x of the CRTM.

Tables 4.12, 4.13, and 4.14 show the surface types, and their index, available for the NPOESS, USGS, and
IGBP land surface classification schemes respectively.

Emissivity model initialisation file changes In the v2.0.x CRTM the only emissivity/reflectivity model
data loaded during initialisation was that for the infrared sea surface emissivity model. Now datafiles
are explicitly loaded for each spectral type (infrared, microwave, and visible) as well as each main surface
type (land, water, snow, and ice). This was done to get set up for planned future changes and updates to
the emissivity and reflectivity models for various spectral regions and surface types.

In general you can rely on the default data files loaded. See table 4.1 for a list of available data files and
their associated optional argument to the CRTM initialisation function.

To migrate from the CRTM v2.0.x initialisation and surface type specification to that implemented in v2.1, see
Appendix C, “Migration Path from REL-2.0 to REL-2.1.”

Xiv

mailto:ncep.list.emc.jcsda_crtm.support@noaa.gov

FASTEMS: amsua channel 1 FASTEMS: amsua channel 1 FASTEMS: amsua channel 1
1500

|

1000 :
I

I

500 |

|

|

l 1 l

10 15 20 25 0*1Cl 0 15 5 10 15
Wind Speed (m/s) ObseNed Calcula(ed dTy K) Wind Speed (m/s)

Observed - Calculated dT; (K)
“
Number of observations
Observed - Calculated dT (K)

20 25
FASTEM4: amsua channel 1 1400 FASTEM4: amsua channel 1 FASTEM4: amsua channel 1
1200
1000
800
600
400
200

Number of observations

Observed - Calculated dT; (K)
Observed - Calculated dT; (K)

10 15 -5 0 5 10 15 5 10 15
Wind Speed (m/s) Observed - Calculated dT; (K) Wind Speed (m/s)

FASTEM1: amsua channel 1 2000 FASTEM1: amsua channel 1 FASTEM1: amsua channel 1

1500

1000

500

Number of observations

Observed - Calculated dT; (K)
Observed - Calculated dT; (K)

0—15 -10 10 0 5 10 15 20 25 30

10 20
Wind Speed (m/s) Observed - Calculated dTg (K) Wind Speed (m/s)

Figure 0.1: GSI single-cycle run (2012060700) results for AMSU-A channel 1 (with QC) comparing
use of FASTEM5 (top panels), FASTEM4 (middle pannels), and FASTEM1 (bottom panels). The
data plots are, from left to right, simple scatterplot, simple histogram, and 2-D density map (brighter
colour indicates higher point density).

FASTEMS: amsua channel 2 FASTEMS: amsua channel 2 FASTEMS: amsua channel 2
< 2000 T <
= @ =
5 5 5
= . o £ 1500 =
2 o 2 %
< 8, ° o) 3
2 o g ‘ 2
K H S 1000 I k|
¢ 2 ! ¢
o c-1 8 | °
g £ o0 l Z
& z I &
2 2
[} 0 | ¢}
10 15 20 25 -10 -5 0 5 10 15 20 10 15
Wind Speed (m/s) Observed - Calculated dT; (K) Wind Speed (m/s)
FASTEM4: amsua channel 2 FASTEM4: amsua channel 2 FASTEM4: amsua channel 2
< 2000 <
= @ =
5 2 l =
5 £ 1500 ! °
31 31
8 H ! 8
3] 3
° 8 1000 i s
: : | :
o g | k-
g £ so0 l g
3 s z | 2
]]
o " 0 L : [} N N
5 10 15 -10 20 5 10 15
Wind Speed (m/s) ObseNed Calculated dTy (K) Wind Speed (m/s)
FASTEM1: amsua channel 2 FASTEMl amsua channel 2 FASTEM1: amsua channel 2
< T 2500 T T T < 20 ™
e 2 l e
o S 2000 | had
- Z -
bt s | bt
T s T
3 $ 1500 | 3
) 2 o
< Kl < -
Q S 1000 | Q
I 500 I -
3 2 | 3
k] 3
(9] 0 L o
10 20 -10 - 15 20 0 15 20 25 30
Wind Speed (m/s) Observed - Calculated dT (K) Wind Speed (m/s)

Figure 0.2: GSI single-cycle run (2012060700) results for AMSU-A channel 2 (with QC) comparing
use of FASTEM5 (top panels), FASTEM4 (middle pannels), and FASTEM1 (bottom panels). The
data plots are, from left to right, simple scatterplot, simple histogram, and 2-D density map (brighter
colour indicates higher point density).

20 FASTEMS: amsua channel 3 2500 FASTEMS: amsua channel 3 FASTEMS: amsua channel 3

2000

1500

1000

500

Number of observations

=

Observed - Calculated dT; (K)
Observed - Calculated dT (K)

10 15 20 25 0*1Cl -5 0 5 10 15 10 15 20 25
Wind Speed (m/s) Observed - Calculated dT; (K) Wind Speed (m/s)
FASTEM4: amsua channel 3 2000 FASTEM4: amsua channel 3 FASTEM4: amsua channel 3

|
1500 !

1000

500

Number of observations

Observed - Calculated dT; (K)
Observed - Calculated dT; (K)

10 15 20 25 0*10 0 5 10 15 20 0 5 10 15
Wind Speed (m/s) Observed - Calculated dT; (K) Wind Speed (m/s)

20 25

FASTEM1: amsua channel 3 2500 FASTEM1: amsua channel 3 FASTEM1: amsua channel 3

2000

1500

1000

500

Number of observations

& >
Observed - Calculated dT; (K)

Observed - Calculated dT; (K)

_lGO 5 10 15 20 25 30 R 10 20 0 5 10 15 20 25 30

-~ 0 5 10 15
Wind Speed (m/s) Observed - Calculated dT; (K) Wind Speed (m/s)

Figure 0.3: GSI single-cycle run (2012060700) results for AMSU-A channel 3 (with QC) comparing
use of FASTEM5 (top panels), FASTEM4 (middle pannels), and FASTEM1 (bottom panels). The
data plots are, from left to right, simple scatterplot, simple histogram, and 2-D density map (brighter
colour indicates higher point density).

FASTEMS: amsua channel 15 FASTEMS: amsua channel 15 FASTEMS: amsua channel 15
< 30 1200 T < 30
=4 . 2 1000 ! =4 }
- 2 -
2 > 800 2 =
= o\ o H = - -
g : 2 ‘ g :
K) S 600 I K :
g ’ ° ! g ;
5 . g 400 | 5 -"
5 Tse T £ | 5 T
g 3 200 ‘ 5
2 2
[} 0 | ¢}
5 10 15 20 25 -10 0 10 20 5 10 15 20 25
Wind Speed (m/s) Observed - Calculated dT; (K) Wind Speed (m/s)
FASTEM4: amsua channel 15 FASTEM4: amsua channel 15 FASTEM4: amsua channel 15
g 1000 T g
Y @ °
5 S 800 : 5
- = -
31 31
8 H 8
& 2 600 3
=) 2 3
< S | <
Q 5 400 I 9
K 2 ! B E
e £ 200 I 2
3 z |]
]]
[9) " " " 0 | " [9) N " N
10 15 20 25 -10 0 10 20 30 5 10 15 20 25
Wind Speed (m/s) Observed - Calculated dT; (K) Wind Speed (m/s)
20 FASTEM1: amsua channel 15 FASTEM1: amsua channel 15 FASTEM1: amsua channel 15
< N .o) , 1500 j)) <
® Py XS =
g 3 g ! g
g ¢ g | g
s . & 1000 £
3 & l 3
) 2 o
8 4 E ! 8
: A 5 500 ‘ :
T e _o K] [-
AFo--1 f ‘ -
3 z | 2
k] 3
(9] 0 L o
10 20 25 30 -10 0 10 20 30 0 5 10 15 20 25 30
Wind Speed (m/s) Observed - Calculated dT; (K) Wind Speed (m/s)

Figure 0.4: GSlI single-cycle run (2012060700) results for AMSU-A channel 15 (with QC) comparing
use of FASTEM5 (top panels), FASTEM4 (middle pannels), and FASTEM1 (bottom panels). The
data plots are, from left to right, simple scatterplot, simple histogram, and 2-D density map (brighter
colour indicates higher point density).

Xvi

Old MW land emissivity model (CTL) New MW land emissivity model (SEN)
Channel 1

90N

60N
3JON m v

EQ
308

605

908

T T T T T T T T T T T 905 T T T T v T T T T T T
0 JOE 60E 90E 120E 150E 180 150W 120W 90w 60w 30w O 0 JOE 60E 90E 120E 150E 180 150W 120w <9OW 6Qw 30w O

B = S R N R S— e B I I R E—
-35-28-21-07 0 0.7 14 21 28 35 -35-28-21-07 0 07 14 21 28 35

Channel 2

90N

60N
JON v

EQ
305

605

30S

T T T T T T T T T T T 30S T T T T T T T T T T T
0 J0E 60E 90E 120E 150E 180 150W 120W 90W 60W 30W 8] 8] JOE 60E 90E 120E 150E 180 1S0W 120W 9OW 60W 30W o

B S N N R — B - S R N R R—
-35-28-21-07 0 0.7 14 21 28 35 -35-28-21-07 0 07 14 21 28 35

Channel 3

90N

60N

JON

EQ

305

603

405

T T T T T T T T T T T 305 T T T T T T T T T T T
0 30E 60E 9OE 120E 150E 180 150w 120w 90w 6aw 30w O 0 30E 60E 90E 120E 150E 180 150W 120w SOW 60w 30w O

-35-28-21-07 0 0.7 14 21 28 35 -35-28-21-07 0 07 14 21 28 35

Figure 0.5: Map of NOAA-18 AMSU-A channels 1-3 brightness temperature differences (observed-
calculated) for the 2010073112 period for a GSI-GFS full cycle run from 1 July 2010 to 1 August
2010. The control run (CTL) uses the currently operational microwave land emissivity model, and
the sensitivity run (SEN) uses the updated microwave land emissivity model.

xvii

Channel index

Channel index

NLTEoff — NLTEon: iasi

550

548

546

544

542

1000 2000 3000
No. of observations

dTb (K)

NLTEoff — NLTEon: iasi
550

548

546

544

542

540

40 60 80 100 120 140
Solar zenith angle (°)

Figure 0.6: GSI single-cycle run (2012070200) results for NLTE-affected MetOp-A 1ASI channels.
The brightness temperature differences are shown as a function of observation (top panel) as well as
solar zenith angle (bottom panel). The channel indices are for the 616 channel subset used in NCEP.
The channel indices shown correspond to channels in the frequency range 2236.25-2391.00cm™.

xviii

What's New in v2.1.1

The v2.1.1 update to the CRTM was done to

e Fix defects, and

e Update some sensor coefficient files.

Bug Fixes

Updated Predictor and AtmAbsorption modules A single channel failure in an IASI K-matrix test was
occurring whenever the library and test executable were built using the Intel ifort compiler. The failure
was tracked to a call to the ODPS predictor adjoint procedure. Pointer components of the various predictor
and absorption structures were replaced with allocatables. This update led to the previously failing test
passing. See ticket 364.

Update of sensor coefficient files

Update of MetOp-B AMSU-A SpcCoeff and TauCoeff coefficient files NESDIS/STAR researchers no-
ticed a large difference between observed and calculated brightness temperatures for channel 15 of MetOp-B
AMSU-A. Inspection of the sensor’s parameters used in the CRTM revealed that the central frequency for
channel 15 was incorrect, 88GHz instead of 89GHz. The central frequency was updated and the SpcCoeff
and TauCoeff coefficient files recreated. See ticket 368.

Xix

https://svnemc.ncep.noaa.gov/trac/crtm/ticket/364
https://svnemc.ncep.noaa.gov/trac/crtm/ticket/368

What's New in v2.1.2

The v2.1.2 update to the CRTM was done to

e Activate the reflectivity correction in the FASTEM4/5 microwave sea surface emissivity models, and

e Minor code fixes.

Science Updates

Activate reflectivity correction in FASTEMS5 /4 Tests of the FASTEMS5 microwave sea surface emissivity
model, via CRTM v2.1.1, in the NCEP Global Data Assimilation System produced a neutral to slightly
negative impact on forecast skill. Additionally, as shown in figures 0.1 to 0.4, there remained an apparent
wind speed dependence in the CRTM brightness temperatures compared to observations for the surface-
sensitive microwave channels.

As explained in Liu et al. [2011], since FASTEM?2, “the total atmospheric transmittance is used in a
correction factor to the reflectivity for the accounting of angular-dependent downward radiation.” The
development of this capability in FASTEM2 is described in Deblonde [2000]. While this capability was
implemented in CRTM v2.1 and v2.1.1, the application of the reflectivity correction was not activated.
The correction is now activated in clear-sky calculations in v2.1.2. See ticket 389

An indication of the differences between the FASTEMS5/4/1 microwave sea surface emissivity models for
some AMSU-A channels (NOAA-15 through MetOp-A) with the FASTEMS5/4 reflectivity correction ac-
tivated are shown in figures 0.7 to 0.14, where the results for runs with the reflectivity corrections are
followed by the same but without the correction. The no-reflectivity-correction plots shown are equivalent
to those in figures 0.1 to 0.4 but updated for the same analysis time (2013012700).

Bug Fixes

Definition of the valid soil and vegetation types This is not so much a bugfix as a code reorganisation.
A new module was created to specify the number and value of parameters for the valid soil and vegetation
types accepted by the microwave land surface emissivity module update. See ticket 371.

Correction of IOSTAT result comparison The error handling portion of the cloud and aerosol I/O procedures
were not checking against the correct value for an IOSTAT result. This error would only manifest itself upon
a CLOSE failure during error cleanup.

XX

https://svnemc.ncep.noaa.gov/trac/crtm/ticket/389
https://svnemc.ncep.noaa.gov/trac/crtm/ticket/371

Figure 0.7: With reflectivity correction. GSI single-cycle run (2013012700) results for AMSU-
(with QC) comparing use of FASTEMS5 (top panels), FASTEM4 (middle pannels),
and FASTEM1 (bottom panels). The data plots are, from left to right, simple scatterplot, simple

A channel

FASTEMS: amsua channel 1

FASTEMS: amsua channel 1

FASTEMS: amsua channel 1

Observed - Calculated dT, (K)

Number of observations

2000

1500

1000

@
=}
3

Observed - Calculated dT, (K)

0 5 10 15 20 25
Wind Speed (m/s)

FASTEMA4: amsua channel 1

A

0 N
-10 -5 10
Observed - Calculated dT, (K)

FASTEM4: amsua channel 1

10 15 20 25
Wind Speed (m/s)

FASTEM4: amsua channel 1

Observed - Calculated dT, (K)

Number of observations

1400
1200
1000

|
|
|
1
1
1
|
|
|
1

Observed - Calculated dT, (K)

10
Wind Speed (mls)
FASTEM1: amsua channel 1

-4 0 5 10
Observed - Calculated dT; (K)
FASTEM1: amsua channel 1

5

10 15 20 25
Wind Speed (m/s)

FASTEM1: amsua channel 1

Observed - Calculated dT, (K)

Number of observations

2000

1500 !

1000

500

Observed - Calculated dT, (K)

5 10 15 25
Wind Speed (m/s)

0
-5 5 10
Observed - Calculated dT, (K)

15

5

10 15 25
Wind Speed (m/s)

histogram, and 2-D density map (brighter colour indicates higher point density).

FASTEMS: amsua channel 1

FASTEMS: amsua channel 1

FASTEMS: amsua channel 1

< 2000 T <
= 2 I =
=l 5) =l
° ‘T 1500 °
31 g 31
k] H ko
3 3 ! 3
< S 1000 ! <
S s w 5
o g | -
3 £ 500 | s
o L o
0
0 5 10 15 20 25 30 -10 -5 0 15 5 10 15 20 25 30
Wind Speed (m/s) Observed - Calculaled dT, (K) Wind Speed (m/s)
FASTEM4: amsua channel 1 FASTEM4: amsua channel 1 FASTEM4: amsua channel 1
o 15 o
B3 1400 53
=3 2 | 3
° S 1200 1]
3 g 3
k<t £ 1000 | E
E £ 800 ! 3
8 2 ! 8
| - - S 600 I I B
3 A 2 400 ! 3
H 80 ages 0, g | H
g A O Z 200 | 2 "
o n L " " N 1 " o H
0
0 5 10 15 20 25 30 -10 -5 0 5 10 15 5 10 15 20 25 30
Wind Speed (m/s) Observed - Calculated dT, (K) Wind Speed (m/s)
FASTEM1: amsua channel 1 FASTEMl amsua channel 1 FASTEM1: amsua channel 1
< 2000 T T T < T
s 2 w g
° 5) °
© % 1500 ©
31 g 31
k4 g ! k4
3 2 3
< S 1000 I <
i s w S
o g | o
8 z | 2
o e L o
0
0 5 10 15 20 25 30 -10 -5 0 5 15 5 10 15 20 25 30

Wind Speed (m/s)

Observed - Calculated dT, (K

Wind Speed (m/s)

Figure 0.8: No reflectivity correction. GSI single-cycle run (2013012700) results for AMSU-
A channel 1 (with QC) comparing use of FASTEM5 (top panels), FASTEM4 (middle pannels),
and FASTEML1 (bottom panels). The data plots are, from left to right, simple scatterplot, simple
histogram, and 2-D density map (brighter colour indicates higher point density).

xXxi

FASTEMS: amsua channel 2 FASTEMS: amsua channel 2 FASTEMS: amsua channel 2

o 2000
< ! <
® @ ®
5 5 5
E % 1500 ! E
2 g | 2
g 5 g
E - ! z
< © 1000 | <
9 s [9
° g | °
8 z | 2
o L o
0
0 5 10 15 20 25 30 -10 0 10 20 30 0 5 10 15 20 25 30
Wind Speed (m/s) Observed - Calculated dT, (K) Wind Speed (m/s)
FASTEM4: amsua channel 2 FASTEM4: amsua channel 2 FASTEM4: amsua channel 2
- 30 T T T 2000 T T T ~ 30 T T T
< <
-) S
s £ g
3 = 1500 3
s H ‘ s
3 2 ! 3
< S 1000 ! <
S s w i
o g | o
g - = E 500 | g
8 z | 2
o Hoe o L o
0 5 10 15 20 25 30 -10 0 10 20 30 0 20
Wind Speed (m/s) Observed - Calculated dT; (K) Wind Speed (m/s)
FASTEM1: amsua channel 2 FASTEM1: amsua channel 2 FASTEM1: amsua channel 2
< 2500 T <
< ” \ <
g & 2000 | 5
° 2 °
] g I g
E ﬁ 1500 | §
8 g ‘ 8
T S 1000 T
3 é l H
g 5 500 ! H
2 z ! 2
& o G o L ¢}
0 5 10 15 20 25 30 -10 0 10 20 30 0 5 10 15 20 25 30
Wind Speed (m/s) Observed - Calculated dT, (K) Wind Speed (m/s)

Figure 0.9: With reflectivity correction. GSI single-cycle run (2013012700) results for AMSU-
A channel 2 (with QC) comparing use of FASTEM5 (top panels), FASTEM4 (middle pannels),
and FASTEM1 (bottom panels). The data plots are, from left to right, simple scatterplot, simple
histogram, and 2-D density map (brighter colour indicates higher point density).

FASTEMS: amsua channel 2 FASTEMS: amsua channel 2 FASTEMS: amsua channel 2
< 2500 T <
= 2 ! =
5 & 2000 | 5
3 g 3
kS g kA
3 & 1500 3
z £ ‘ z
< S 1000 | ©
3 £ ! 3
g 5 500 ! H
& z | &
g s 5
0 5 10 15 20 25 30 -10 0 10 20 30 0 5 10 15 20 25 30
Wind Speed (m/s) Observed - Calculated dT, (K) Wind Speed (m/s)
FASTEM4: amsua channel 2 FASTEM4: amsua channel 2 FASTEM4: amsua channel 2
< 2500 T <
> 2 ! e
5 5 2000 | 5
3 g 3
s 4 |)
3 & 1500 3
2 2 2
3 2 3
| S 1000 I ;
3 2 ! 3
2 5 s00 ! g
2 z | 2
S S
1 h N "
0
0 5 10 15 20 25 30 -10 0 10 20 30 0 5 10 15 20 25 30
Wind Speed (m/s) Observed - Calculated dT, (K) Wind Speed (m/s)
FASTEM1: amsua channel 2 FASTEM1: amsua channel 2 FASTEM1: amsua channel 2
< 2500 T T T < 30 T T T T T
< 2 \ s
5 & 2000 | 5
8 g g
= 4 [g
El 8 1500 [3
s S I 510
T © 1000 T
- 8 | -
2 o
0
ﬂa) g 500 ! nE)
2 z [2 =}
s . . .) 5 7
0 5 10 15 20 25 30 -10 0 10 20 30 0 5 10 15 20 25 30
Wind Speed (m/s) Observed - Calculated dT, (K) Wind Speed (m/s)

Figure 0.10: No reflectivity correction. GSI single-cycle run (2013012700) results for AMSU-
A channel 2 (with QC) comparing use of FASTEM5 (top panels), FASTEM4 (middle pannels),
and FASTEML1 (bottom panels). The data plots are, from left to right, simple scatterplot, simple
histogram, and 2-D density map (brighter colour indicates higher point density).

xxii

FASTEMS: amsua channel 3 FASTEMS: amsua channel 3 FASTEMS: amsua channel 3

o 2500 o
< <
® @ ®

5 S 2000 5

3 g 3

k] 2 ! &

3 $ 1500 1 3

3 g | 3

T S 1000 | 7

3 2 ! 3

: :

S S 500 ! s

8 z | 2

o 0 A . " o

0 5 10 15 20 25 30 -10 5 10 15 20 0 5 10 15 20 25 30
Wind Speed (m/s) Observed Calculated dT, (K) Wind Speed (m/s)
FASTEM4: amsua channel 3 FASTEM4 amsua channel 3 FASTEM4: amsua channel 3
g T T T T 2500 g T T T
- @ o

s S 2000 5

3 g 3

s g5 g

3 ﬁ 1500 | 3

8 s ! 8

T © 1000 1 T

3 2 ! 3

s s

2 500 1 2

2 2 ! 2

o o ‘ o
10 2 -10 15 2 0 20
Wind Speed (m/s) Observed Calculaled dT (K) Wind Speed (m/s)

FASTEM1: amsua channel 3 FASTEM1: amsua channel 3 FASTEM1: amsua channel 3
g 2500 g
a |

g & 2000 | 5

3 g 3

s g | £

§ 2 1500 | §

8 g ‘ 8

| S 1000 I ;

3 2 ! 3 =7

e 5 500 ! &

2 z ! 2

o o ‘ o

0 5 10 15 25 30 -10 15 20 0 5 10 15 25 30

Wind Speed (m/s) Observed Calculaled d'l'B (K) Wind Speed (m/s)

Figure 0.11: With reflectivity correction. GSI single-cycle run (2013012700) results for AMSU-
A channel 3 (with QC) comparing use of FASTEM5 (top panels), FASTEM4 (middle pannels),
and FASTEM1 (bottom panels). The data plots are, from left to right, simple scatterplot, simple
histogram, and 2-D density map (brighter colour indicates higher point density).

FASTEMS: amsua channel 3 FASTEMS amsua channel 3 FASTEMS: amsua channel 3
< 2500 <
= 2 \ =
5 & 2000 | 5
3 g 3
s e ! £
3 & 1500 3
z £ z
S S 1000 I §
3 £ ! 3
g 5 500 ! H
2 z ! 2
o ‘ o
0
0 5 10 15 20 25 30 -10 20 0 5 10 15 20 25 30
Wind Speed (m/s) Obsevved Calculaled d‘l’B K Wind Speed (m/s)
FASTEM4: amsua channel 3 FASTEM4: amsua channel 3 FASTEM4: amsua channel 3
< 2500 <
z 2 ‘ =
5 5 2000 | 5
3 g 3
s 4 |)
3 & 1500 l 3
2 2 2
3 2 3
1 o 2 1000 | 1
3 - ! 3 7
g S 500 [e
2 z ! 2
o 1 " h o
0
0 5 10 15 20 25 30 -10 -5 0 5 10 15 20 0 5 10 15 20 25 30
Wind Speed (m/s) Observed - Calculated dT, (K) Wind Speed (m/s)
FASTEM1: amsua channel 3 FASTEML1: amsua channel 3 FASTEM1: amsua channel 3
< 2500 T T T T <
< 2 | s
5 & 2000 | 5
3 g 3
g 4 ! g
El 8 1500 1 3
8 s ! 8
| © 1000 I T
3 H ! 3
2 1 s
ﬁ El 500 \ ﬁ
o L o
0
0 5 10 15 20 25 30 -10 -5 0 5 10 15 20 0 5 10 15 20 25 30
Wind Speed (m/s) Observed - Calculated dT, (K) Wind Speed (m/s)

Figure 0.12: No reflectivity correction. GSI single-cycle run (2013012700) results for AMSU-
A channel 3 (with QC) comparing use of FASTEM5 (top panels), FASTEM4 (middle pannels),
and FASTEML1 (bottom panels). The data plots are, from left to right, simple scatterplot, simple
histogram, and 2-D density map (brighter colour indicates higher point density).

xxiii

FASTEMS: amsua channel 15 FASTEMS: amsua channel 15 FASTEMS: amsua channel 15

< 1200
T4 £ 1000 ! T4
3 g ‘ 3
s 2 800 ! E
E g ‘ E
< o 600 | <
9 s [9
3 & 400 | 3
2 E | 2
g 2 200 , 8
(¢} 1 N (e}
0
0 5 10 15 20 25 30 -10 0 1 20 30 40 0 5 10 15 20 25 30
Wind Speed (m/s) Observed - Calculated dT, (K) Wind Speed (m/s)
FASTEMA4: amsua channel 15 FASTEM4: amsua channel 15 FASTEM4: amsua channel 15
< 40 F T T T T T 1200 T T T < 40 F T T T T T
< 2 | s
5 £ 1000 [
3 g 3
K] 5 800 s
E 2 ! E
< S 600 ! <
S s w i
3 & 400 | 3
2 E | 2
ﬁ 2 200 | ﬁ
o L o
0
0 5 10 15 20 25 30 -10 0 10 20 30 40 0 5 10 15 20 25 30
Wind Speed (m/s) Observed - Calculated dT; (K) Wind Speed (m/s)
FASTEM1: amsua channel 15 FASTEM1: amsua channel 15 FASTEM1: amsua channel 15
< 2000 T <
= 2 I =
= s 5
E = 1500 E
5 H | 5
3 a ! 3
K © 1000 ! <
i s ! i
o 2 1 3
g £ 50 | g
b z | 4
o L o
0
0 5 10 15 20 25 30 -10 0 10 20 30 40 0 5 10 15 20 25 30
Wind Speed (m/s) Observed - Calculated dT, (K) Wind Speed (m/s)

Figure 0.13: With reflectivity correction. GSI single-cycle run (2013012700) results for AMSU-
A channel 15 (with QC) comparing use of FASTEMS5 (top panels), FASTEM4 (middle pannels),
and FASTEM1 (bottom panels). The data plots are, from left to right, simple scatterplot, simple
histogram, and 2-D density map (brighter colour indicates higher point density).

FASTEMS: amsua channel 15 FASTEMS: amsua channel 15 FASTEMS: amsua channel 15
< , 1400 ‘ <
= =
i § 1200 | 5
3 g 3
k<t £ 1000 bt
3 2 800 3
3 2 3
T S 600 | ;
o 2 [3
s £ 400 | s
S 3 S
2 Z 200 I b
o L o
0
0 5 10 15 20 25 30 -10 0 10 20 30 40 0 5 10 15 20 25 30
Wind Speed (m/s) Observed - Calculated dT, (K) Wind Speed (m/s)
FASTEM4: amsua channel 15 FASTEM4: amsua channel 15 FASTEM4: amsua channel 15
g 1200 T g
T4 £ 1000 ! T4
3 g ‘ 3
s 5 800 ! £
3 - z
< o 600 K
S B 5 o
| o |
3 8 400 | 3
H - g | H
8 2 200 | 8
(¢} 1 N (¢}
0
0 5 10 15 20 25 30 -10 0 10 20 30 40 0 5 10 15 20 25 30
Wind Speed (m/s) Observed - Calculated dT, (K) Wind Speed (m/s)
FASTEM1: amsua channel 15 FASTEM1: amsua channel 15 FASTEM1: amsua channel 15
= 2000 T T - - 2
£ 2 ! ¢
© 5 1500 ©
31 g 31
= e I g
3 2 ! 3
< S 1000 ! <
i s w S
o g | o
g £ 500 | g
8 z | 2
o L o
0
0 5 10 15 20 25 30 -10 0 10 20 30 40 0 5 10 15 20 25 30
Wind Speed (m/s) Observed - Calculated dT, (K) Wind Speed (m/s)

Figure 0.14: No reflectivity correction. GSI single-cycle run (2013012700) results for AMSU-
A channel 15 (with QC) comparing use of FASTEM5 (top panels), FASTEM4 (middle pannels),
and FASTEML1 (bottom panels). The data plots are, from left to right, simple scatterplot, simple
histogram, and 2-D density map (brighter colour indicates higher point density).

XXiv

What's New in v2.1.3

The v2.1.3 update to the CRTM was done to

e Update CrIS, IASI, and AIRS transmittance coefficient data,
e Update infrared sea surface emissivity model data,
e Add antenna correction data for MetOp-B AMSU-A and MHS,

e Correct an adjoint model bug introduced in v2.1.2.

Science Updates

Update CrlIS, TASI, and AIRS transmittance coefficient data The transmittance model coefficients were
recomputed for the infrared hyperspectral sensors to upgrade the line-by-line model, LBLRTM, from v11.3
to v12.1 and, in the case of NPP CrIS, include coefficients for the trace gases NoO, CHy, and CO. The
brightness temperature differences for the MetOp-A TASI 616 channel subset for two test profiles due to
the LBLRTM update are shown in figure 0.15. Similarly, the brightness temperature differences for NPP
CrIS are shown in figure 0.16.

Update infrared sea surface emissivity model data The infrared sea surface emissivity model (IRSSEM)
interpolates look-up-table (LUT) data as a function of zenith angle using a weighted quadratic method. For
individual frequencies in the Nalli emissivity data (see Nalli et al. [2008a] and Nalli et al. [2008b]) there is
a sharp dropoff as a function of zenith angle. Interpolation of data close to this dropoff produced artifacts
exacerbated by the 5° spacing of the emissivities. Decreasing the zenith angle spacing of the emissivity
data to 1° minimises the interpolation artifacts. See figure 0.17.

In addition to decreasing the zenith angle spacing, the updated Nalli emissivity data was derived using the
"varMinT” technique (see equations 29 and 30 in Nalli et al. [2008a]), as opposed to the minimum RMS
technique of the original data (see equations 31 and 32 in Nalli et al. [2008a]). These two approaches are
very similar but do produce slightly different results, particularly at higher zenith angles.

To quantify the differences in changing to the updated Nalli emissivities, the CRTM forward model was
run for a randomised set of zenith angles from -60° to 60° for 32703 model profiles over ocean, using the
MetOp-A TASI Band 1 transmittance coefficients. The average, RMS, and absolute maximum differences
seen in the emissivities and the brighntess temperatures are shown in figure 0.18.

Update of sensor coefficient files

Addition of antenna correction to MetOp-B AMSU-A and MHS SpcCoeff coefficient files The SpcCoeff
datafiles for MetOp-B AMSU-A and MHS in previous CRTM releases did not contain the antenna correc-
tion coeflicients. The SpcCoeff files for these sensors have been updated to include the antenna correction

XXV

data? per the algorithms described in Mo [1999] and Hewison and Saunders [1996] for the AMSU-A and
AMSU-B/MHS respectively. See ticket 408.

Bug Fixes

Correction of an adjoint model bug introduced in v2.1.2 The default transmittance value that is used
in the reflectivity correction for FASTEM4/5 was not being initialised correctly in the adjoint code. This
was causing the atmospheric K-matrix output for the first channel of microwave instruments to be incorrect.
See tickets 401 and 407.

2Thanks to Nigel Atkinson of the UK MetOfiice for providing the data.

XXVi

https://svnemc.ncep.noaa.gov/trac/crtm/ticket/408
https://svnemc.ncep.noaa.gov/trac/crtm/ticket/401
https://svnemc.ncep.noaa.gov/trac/crtm/ticket/407

Test profile #1 brightness temperature differences due to LBLRTM 11.3-12.1 update
for the MetOp—A IASI 616 channel subset

1.0 T T T | T T T | T T T | T T T B
05 o, i —
= E o Ao Lo b :?‘«t S o
C . S NS e Ty 3 et F 0 s e
8 0.0 ey ¢ s ol ouman Lonn o d n.._ _L Mﬁo e - - .?' ¢ = —
o - . ’ o =
2 -05F . P 3
< - 3 -
B -10— : —
~15F : —
20 - I I I | I I I | I I I | I I I B
0 2000 4000 6000 8000
Sensor channel
Test profile #2 brightness temperature differences due to LBLRTM 11.3-12.1 update
for the MetOp—A IASI 616 channel subset
2 T T T | T T T | T T T | T T T B
1 ‘ 5 ot —
= oo L : 3
- o2 o8 L . -
.E =% ' o q!‘ ’:'. ‘. g0t 1 {3 e o $ \ A
s E woag ot BEE 0 8T e . . =
i oR b _bu_.'n‘.o..m P TS 0_‘0 L .@W‘o_ Y AR IR S A A M N 0’_ _ _. _— -t - - - -
& - . . 3
s - . -
= = . =
A . -
-1 N —
5 - ! ! ! | ! ! ! | ! ! ! | ! ! ! H
0 2000 4000 6000 8000

Sensor channel

Figure 0.15: Example of the brightness temperature differences seen for two test profiles for the
616 channel subset of MetOp-A IASI due to upgrading LBLRTM from v11.3 to v12.1.

poaatl

AT, (K), old—new

AT, (K), old—new

Test profile #1 brightness temperature differences due to LBLRTM 11.3-12.1 update
and addition of NZO, CH4, and CO absorbers for NPP CrIS

10— T 71 71 o[1 [1ot &t [T 1T 1
05— —
05 :_ Band 1 _:
- Band 2 _
- — Band 3 —
-1.0—]
15 I I | [| [| [| I | [| [

0 200 400 600 800 1000 1200

Sensor channel
Test profile #2 brightness temperature differences due to LBLRTM 11.3-12.1 update
and addition of NZO, CH4, and CO absorbers for NPP CrIS

1517171 r r. 1| 111|111t T 1T 171 T
1.0 — —
0.5 — -
~0.5— —
-1.0 —
15 - oo e e b b by by :r

0 200 400 600 800 1000 1200

Sensor channel

Figure 0.16: Example of the brightness temperature differences seen for two test profiles for NPP
CrlS due to upgrading LBLRTM from v11.3 to v12.1.

xxXviii

Emissivity

= I I I I I I —I-
B Interpolation artifacts n
0.99302 — reduced at finer 6, spacing —
—a—a—a—a—a \
0.99300 [—
0.99298 [—
L O O O coarser 6, data
0.99296 — Coarser 6, interpolated data
: A A A Finer 0, data
- Finer 8, interpolated data
0.99294 —

Zenith angle, 6, (degrees)

Figure 0.17: Example of the emissivity interpolation artifacts along the zenith angle dimension for
the IASI band 1 channel at 900cm™ and a wind speed of 5ms™ for angle spacings of 5° (" coarse”)
and 1° ("fine").

XXix

IASI band 1 average, RMS, and maximum emissivity differences
T T | T T T T | T T T T | T T T T

0.0010
0.0008
0.0006

., 0.0004

<
0.0002
0.0000

~0.0002

_O 0004 | | | | | | | | | | | | | | | | | | |
77800 850 900 950

Frequency (cm ")

IASI band 1 average, RMS, and maximum T, differences
T T T T | T T T T | T T T T | T T T T

|

=
o
o
o

0.05

0.04 Average
— RMS

—— |Max]

0.03

0.02

ATy (K)

0.01

0.00

~0.01 1 1 1 1 | 1 1 1 1 | 1 1 1 1 | 1 1 1 [
"800 850 900 950 1000

Frequency (cm)

Figure 0.18: The average, RMS, and absolute maximum differences between the Nalli model emis-
sivities (top) and associated computed brightness temperature (bottom) for the longwave window in
band 1 of the MetOp-A IASI. The CRTM forward model computations used 32703 model profiles
over ocean for a randomised set of zenith angles from -60° to 60°.

XXX

Nalli model emissivity differences for IASI channel at 900.00cm
0.0004 LN L L B L L B BB

0.0003

0.0002
w
<

0.0001

0.0000

-0.0001 N T I I | | N O I I | N T T T I | N T I I | | I I I | N T I T
' 0 10 20 30 40 50 60
Zenith angle (°)

Brightness temperature differences for IASI channel at 900.00cm *
IIIIIIII|IIIIIIIII|IIIIIIIII|IIIIIIIII|IIIIIIIII|IIIIIIIII

0.020

0.015

0.010

ATy (K)

0.005

0.000

_O 005 I I I I | | N I T I I | | I O I O | | I I I | | I I T O I | | I O I O |
' 10 20 30 40 50 60
Zenith angle (°)

o

Histogram of brightness temperature differences for IASI channel at 900.00cm
T T T | T T T T

(8839)

Number of profiles

_I_III|IIII|IIII|IIII|III_I_

i

8_I_III|IIII|IIII|IIII|III_I_

0
~0.005 0.000 0.005 0.010 0.015
ATg (K)

o

Figure 0.19: Differences in computed emissivity (top) and brightness temperature (middle) for the
MetOp-A IASI 900cm™" channel due to the Nalli model emissivity update. The “waviness” in the
emissivity differences (most evident here between 50-60°) is due to the interpolation, and the offset
and slope beyond ~20° is thought to be due to the minimisation technique. The histogram (bottom)
indicates the majority of T'p differences that can be expected at this frequency are <6mK.

poeel

Nalli model emissivity differences for IASI channel at 820.00cm

0.0006_|||
0.0004 [—
40.0002 [~
0.0000 =
_00002 IIIIIIIII|IIIIIIIII|IIIIIIIII|IIIIIIIII|IIIIIIIII|IIIIIIIII
10 20 30 40 50 60
Zenith angle (°)
Brightness temperature differences for IASI channel at 820.00cm *
0.03 FETTTTTTTTT | FrTTTTTTTT | FrTTTTTTTT | rTTTTTTTT | FrTTTTTTTT | FrTTTTTTTI
0.02 E
€ E
e 0.01 =
< =
0.00 1=
_OOlEI I O T Y | | I N T Y I | | I O T T T I | | I O T T I | | I N T Y I | | I T T T Y I A
0 10 20 30 40 50 60
Zenith angle (°)
Histogram of brightness temperature differences for IASI channel at 820.00cm
2500 1 B A B LI B B B By
H (9035) 5
§ 2000 - E
15 - 3
S 1500 [-
kS -]
2 1000 —
€ -]
=] C 7
Z 500 =
0 :I N Y Y A Y S I | T N I N ISR N | I:
-0.01 0.00 0.01 0.02 0.03
ATg (K)

Figure 0.20: Differences in computed emissivity (top) and brightness temperature (middle) for the
MetOp-A IASI 820cm™" channel due to the Nalli model emissivity update. The “waviness” in the
emissivity differences (most evident here between 50-60°) are due to the interpolation, and the offset
and slope beyond ~20° is thought to be due to the minimisation technique. The histogram (bottom)
indicates the majority of T'p differences that can be expected at this frequency are <10mK.

xXxxii

Introduction

1.1 Conventions

The following are conventions that have been adhered to in the current release of the CRTM framework. They
are guidelines intended to make understanding the code at a glance easier, to provide a recognisable “look and
feel”, and to minimise name space clashes.

1.1.1 Naming of Structure Types and Instances of Structures

The derived data type, or structure' type, naming convention adopted for use in the CRTM is,
[CRTM_]1 name_type

where name is an identifier that indicates for what a structure is to be used. All structure type names are
suffixed with “_type” and CRTM-specific structure types are prefixed with “CRTM_”. Some examples are,

CRTM_Atmosphere_type
CRTM_RTSolution_type

An instance of a structure is then referred to via its name, or some sort of derivate of its name. Some structure
declarations examples are,

TYPE(CRTM_Atmosphere_type) :: atm, atm_K
TYPE(CRTM_RTSolution_type) :: rts, rts_K

where the K-matrix structure variables are identified with a “_X” suffix. Similarly, tangent-linear and adjoint
variables are suffixed with “_TL” or “_AD” respectively.

1.1.2 Naming of Definition Modules

Modules containing structure type definitions are termed definition modules. These modules contain the actual
structure definitions as well as various utility procedures that operate on the structure of the designated type.
The naming convention adopted for definition modules in the CRTM is,

[CRTM_] name_Define

where, as with the structure type names, all definition module names are suffixed with “ Define” and CRTM-
specific definition modules are prefixed with “CRTM_”. Some examples are,

1The terms “derived type” and “structure” are used interchangably in this document.

CRTM_Atmosphere_Define
CRTM_RTSolution_Define

The actual source code files for these modules have the same name with a “.£90” suffix.

1.1.3 Standard Definition Module Procedures

The definition modules for the user-accessible CRTM structures (Atmosphere, Cloud, Aerosol, Surface, Geometry,
RTSolution, and Options) contain a standard set of procedures for use with the structure being defined. The
naming convention for these procedures is,

CRTM_name_action

where the available default actions for each procedure are listed in table 1.1. This is not an exhaustive list but
procedures for the actions listed in table 1.1 are guaranteed to be present.

Note, however, that the ChannelInfostructure does not have any 1/O procedures available for it. This is to
ensure that the ChannelInfostructure can only be populated during initialization of the CRTM.

Table 1.1: Default action procedures available in structure definition modules. T 1/0 functions not
available for the ChannelInfo structure.

Action Type Description

OPERATOR (== Elemental function Tests the equality of two structures.
Associated Elemental function Tests if the structure components have been allocated.
Destroy Elemental subroutine Deallocates any allocated structure components.
Create Elemental subroutine Allocates any allocatable structure components.

Inspect Subroutine Displays structure contents to stdout.

InquireFilef Function Inquires an existing file for dimensions.

WriteFilef Function Write an instance of a structure to file.
ReadFilef Function Loads an instance of a structure with data read from file.

Some examples of these procedure names are,

CRTM_Atmosphere_Associated
CRTM_Surface_Inspect
CRTM_Geometry_WriteFile
CRTM_RTsolution_Destroy

The relational operator, ==, is implemented via an overloaded Equal action procedure, as is shown below for the
Atmosphere structure,

INTERFACE OPERATOR (==
MODULE PROCEDURE CRTM_Atmosphere_Equal
END INTERFACE OPERATOR(==

For a complete list of the definition module procedures for use with the publicly available structures, see section
A.

1.1.4 Naming of Application Modules

Modules containing the routines that perform the calculations for the various components of the CRTM are
termed application modules. The naming convention adopted for application modules in the CRTM is,

CRTM_name

Some examples are,

CRTM_AtmAbsorption
CRTM_SfcOptics
CRTM_RTSolution

However, in this case, name does not necessarilty refer just to a structure type. Separate application modules are
used as required to split up tasks in manageable (and easily maintained) chunks. For example, separate modules
have been provided to contain the cloud and aerosol optical property retrieval; similarly separate modules handle
different surface types for different instrument types in computing surface optics.

Again, the actual source code files for these modules have the same name with a “.£90” suffix. Note that not
all definition modules have a corresponding application module since some structures (e.g. SpcCoeff structures)
are simply data containers.

1.2 Components

The CRTM is designed around three broad categories: atmospheric optics, surface optics and radiative transfer.

1.2.1 Atmospheric Optics

(AtmOptics) This category includes computation of the absorption by atmospheric gases (AtmAbsorption) and
scattering and absorption by both clouds (CloudScatter) and aerosols (AerosolScatter).

The gaseous absorption component computes the optical depth of the absorbing constituents in the atmosphere
given the pressure, temperature, water vapour, ozone, and — for the hyperspectral infrared sensors — trace gas?
profiles.

The scattering component simply interpolates look-up-tables (LUTSs) of optical properties — such as mass ex-
tinction coefficient and single scatter albedo — for cloud and aerosol types that are then used in the radiative
transfer component. See tables 4.8 and 4.9 for the current valid cloud and aerosol types, respectively, that are
valid in the CRTM.

1.2.2 Surface Optics

(SfcOptics) This category includes the computation of surface emissivity and reflectivity for four main surface
categories (land, water, snow, and ice). The surface optics models are implemented differently for different
surface categories based upon the spectral region of a sensor. Thus, each surface category may have a number
of surface types associated with it. This is fully discussed in section 4.6.2.

1.2.3 Radiative Transfer Solution

(RTSolution) This category takes the AtmOptics and SfcOptics data and solves the radiative transfer problem
in either clear or scattering atmospheres.

2C0,, CHy, CO, and N3O

1.3 Models

The CRTM is composed of four models: a forward model, a tangent-linear model, an adjoint model, and a
K-matrix model. These can be represented as shown in equations 1.1a to 1.1d.

T, R = F(T,q,Ts,...) (1.1a)

0Tg,0R = H(T,q,Ts,..0T,dq, 0T, ...) (1.1b)

8T, 0%q,6'T,,... = HY(T,q,Ts,...0"TB) (1.1c)
&}, 6%q, 0 T.y,... = K(T,q,Ts,..0"Tg) for | =1,2,...,L (1.1d)

Here F is the forward operator that, given the atmospheric temperature and absorber profiles (T and q), surface
temperature (Ty), etc., produces a vector of channel brightness temperatures (Tg) and radiances (R).

The tangent-linear operator, H, represents a linearisation of the forward model about T, q, Ts, etc. and when
also supplied with perturbations about the linearisation point (quantities represented by the 0’s) produces the
expected perturbations to the brightness temperature and channel radiances.

The adjoint operator, HT, is simply the transpose of the tangent-linear operator and produces gradients (the
quantities represented by the §*s). It is worth noting that, in the CRTM, these adjoint gradients are accumulated
over channel and thus do not represent channel-specific Jacobians.

The K-matrix operator®, K, is effectively the same as the adjoint but with the results preserved by channel
(indicated via the subscript {). In the CRTM, the adjoint and K-matrix results are related by,

L
0w = Z&*J;l (1.2)
=1

Thus, the K-matrix results are the derivatives of the diagnostic variables with respect to the prognostic variables,
e.g.

s,
ox

(S*$l =

(1.3)

Typically, only the forward or K-matrix models are used in applications. However, the intermediate models are
generated and retained for maintenance and testing purposes. Any changes to the CRTM forward model are
translated to the tangent-linear model and the latter tested against the former. When the tangent-linear model
changes have been verified, the changes then translated to the adjoint model and, as before, the latter is tested
against the former. This process is repeated for the adjoint-to-K-matrix models also.

1.4 Design Framework

This document is not really the place to fully discuss the design framework of the CRTM, so it will only be
briefly mentioned here. Where appropriate, different physical processes are isolated into their own modules. The
CRTM interfaces presented to the user are, at their core, simply drivers for the individual parts. This is shown
schematically in the forward and K-matrix model flowcharts of figure 1.1.

A fundamental tenet of the CRTM design is that each component define its own structure definition and applica-
tion modules to facilitate independent development of an algorithm outside of the mainline CRTM development.

3The term K-matrix is used because references to this operation in the literature commonly use the symbol K

By isolating different processes, we can more easily identify requirements for an algorithm with a view to min-
imise or eliminate potential software conflicts and/or redundancies. The end result sought via this approach is
that components developed by different groups can more easily be added into the framework leading to faster
implementation of new science and algorithms.

Profile loop

Begin
Forward Model

Sensor loop

,,,,,,,,,,,,,, ‘

Compute
surface temperature

|

Compute AtmAbsorption
predictors

Compute AtmAbsorption
optical depth

Yes

Compute CloudScatter
optical properties

No

Any
aerosols?

Compute AerosolScatter
optical properties

Combine AtmAbsorption,|
CloudScatter and
AerosolScatter

Sensor channel loop

RTSolution

Compute stream
angles

!

Compute SfcOptics
at stream angles

}

Perform radiative
transfer

Another
channel?

Another
sensor?

Another
profile?

Forward Model
complete

(a) Forward Model

Figure 1.1: Flowchart of the CRTM Forward and K-Matrix models.

Profile loop

Begin
K-Matrix Model

Channel independent

"""""""" - forward model
calculations
Channel dependent
""""""" R forward model

calculations

RTSolution adjoint

Compute stream
angles

:

Perform adjoint
radiative transfer

;

Compute adjoint
SfcOptics

Adjoint AtmAbsorption,
CloudScatter and
AerosolScatter combine

aerosols?

Compute adjoint
AerosolScatter

Sensor loop
Sensor channel loop

Yes

No

Compute adjoint
CloudScatter

)

Compute adjoint
AtmAbsorption

l

Compute adjoint
predictors

l

Compute adjoint
surface temperature

Another
channel?

Another
sensor?

Another
profile?

K-Matrix Model
complete

(b) K-Matrix Model

How to obtain the CRTM

2.1 CRTM ftp download site

The CRTM source code and coefficients are released in a compressed tarball! via the CRTM ftp site:
ftp://ftp.emc.ncep.noaa.gov/jcsda/CRTM/

The REL-2.1.3 release is available directly from
ftp://ftp.emc.ncep.noaa.gov/jcsda/CRTM/REL-2.1.3

Also note that additional releases, e.g. beta or experimental branches, may also made available on this ftp site.

2.2 Coefficient Data

All of the transmittance, spectral, cloud, aerosol, and emissivity coefficient data needed by the CRTM are
available in the fix/? subdirectory. The coefficient directory structure is organised by coefficient and format
type as shown in figure 2.1.

Both big- and little-endian format files are provided to save users the trouble of switching what they use for
their system?®. Note in the TauCoeff directory there are two subdirectories: ODAS and ODPS. These directories
correspond to the coefficient files for the different transmittance model algorithms. The user can select which
algorithm to use by using the corresponding TauCoef! file.

To run the CRTM, all the required coefficient files need to be in the same path (see the CRTM initialisation
function description) so users will have to move/link the datafiles as required.

LA compressed (e.g. gzip’d) tape archive (tar) file.

2The directory name “fix” is an NCEP standard name for a location containing files that do not change (frequently), i.e. they
are “fixed”.

3 All of the supplied configurations for little-endian platforms described in Section 3 use compiler switches to default to big-endian
format.

ftp://ftp.emc.ncep.noaa.gov/jcsda/CRTM
ftp://ftp.emc.ncep.noaa.gov/jcsda/CRTM/REL-2.1.3

CRTM _Coefficients/

— SpcCoeff/
t Big_Endian/ } Spectral coefficients
Little_Endian/

— TauCoeff/

ODAS/ } ODAS fast transmittance

Big_Endian/ .
t Little Endian/ model coeflicients

Big_Endian/ :
Little Endian/ model coefficients

— AerosolCoeff/
t Big_Endian/ } Aerosol optical properties
Little_Endian/

— CloudCoeff/
t Big_Endian/ } Cloud optical properties
Little_Endian/

— EmisCoeff/
t Big_Endian/ } Surface emissivity model coefficients
Little_Endian/

OEDPS/ } ODPS fast transmittance

Figure 2.1: The CRTM coefficients directory structure

How to build the CRTM library

3.1 Build Files

The build system for the CRTM is relatively unsophisticated and is constructed for the Unix sh shell (or its
derivative bsh, bash, or ksh shells). Currently csh (or any of its variants) is not supported.

The build system consists of a number of make, include, and configuration files in the CRTM tarball hierarchy:

makefile : The main makefile

make .macros : The include file containing the defined macros.

make.rules : The include file containing the suffix rules for compiling Fortran95/2003 source
code.

configure : The directory containing build environment definitions.

3.2 Predefined Configuration Files

The build makefiles now assumes that environment variables (envars) will be defined that describe the compilation
and link environment. The envars that must be defined are:

FC : the Fortran95/2003 compiler executable,
FC_FLAGS : the flags/switches provided to the Fortran compiler,
FL : the linker used to create the executable test/example programs, and

FL_FLAGS : the flags/switches provided to the linker.

Several shell source files are provided for the build environment definitions for the compilers to which we have
access and have tested here at the JCSDA. These shell source files are in the configure subdirectory of the
tarball. The configuration files provided are shown in table 3.1. Both “production” and debug configurations are
supplied, with the former using compiler switches to produce fast code and the latter using compiler switches
to turn on all the available debugging capabilities. Note that the debug configurations will produce executables
much slower than the production builds.

Table 3.1: Supplied configuration files for the CRTM library and test/example program build.

Platform Compiler Production Debug
GNU gfortran gfortran.setup gfortran_debug.setup
Linus Intel ifort intel.setup intel_debug.setup
PGI pgf95 pgi.setup pgi_debug.setup
295 g95.setup g95_debug.setup
IBM AIX x1f95 x1f.setup x1f_debug.setup

3.3 Compilation Environment Setup

To set the compilation envars for your CRTM build, you need to source the required configuration setup file.
For example, to use gfortran to build the CRTM you would type

configure/gfortran.setup

W

in the main directory. Note the and space preceding the filename. This should print out something like the

following:

CRTM compilation environment variables:

FC: gfortran

FC_FLAGS: -c -03 -fimplicit-none -fconvert=big-endian -ffree-form
-fno-second-underscore -frecord-marker=4 -funroll-loops
-ggdb -Wall -std=£f2003

FL: gfortran

FL_FLAGS:

FL_FLAGS:

indicating the values to which the envars have been set.

Change the supplied setups to suit your needs. If you use a different compiler please consider submitting your
compilation setup to be included in future releases.

Note that as of CRTM v2.0, the Fortran compiler needs to be compatible with the ISO TR-15581 Allocatable
Enhancements update to Fortran95. Most current Fortran95 compilers do support TR-15581.

3.4 Building the library

Once the compilation environment has been set, the CRTM library build is performed by simply typing,
make

after which you should see the source file compilation output. Depending on the compiler used you may see
various warning messages, for example

warning: ’cchar[1]1lb: 1 sz: 1’ may be used uninitialized in this function
or
PGF90-I-0035-Predefined intrinsic scale loses intrinsic property

etc. The actual format of the warning message depends on the compiler. We are working on eliminating these
warning messages where appropriate or necessary.

Note that the current build process is set up to generate a static library not a shared one.

10

3.5 Testing the library

Several test/example programs exercising the forward and K-matrix functions have been supplied with the
CRTM. To build and run all these tests, type,

make test

This process does generate a lot of output to screen so be prepared to scroll through it. Currently there are nine
forward model test, or example, programs:

test/forward/Examplel_Simple
test/forward/Example2_SSU
test/forward/Example3_Zeeman
test/forward/Example5_ClearSky
test/forward/Example6_ChannelSubset
test/forward/Example7_AQD
test/forward/Example9_Aircraft
test/forward/Examplel0_ScatteringSwitch
test/forward/Examplell_S0I

And there are eight cases for the K-matrix model:

test/k_matrix/Examplel_Simple
test/k_matrix/Example2_SSU
test/k_matrix/Example3_Zeeman
test/k_matrix/Example5_ClearSky
test/k_matrix/Example6_ChannelSubset
test/k_matrix/Example7_AOD
test/k_matrix/ExamplelO_ScatteringSwitch
test/k_matrix/Examplell_SO0I

Both the forward and K-matrix tests should end with output that looks like:

SUMMARY OF ALL RESULTS

Passed 34 of 34 tests.
Failed O of 34 tests.

Currently they both have the same number of tests. If you encounter failures you might see something like:

SUMMARY OF ALL RESULTS

Passed 24 of 34 tests.
Failed 10 of 34 tests. <-——--<<< **xWARNING**

Some important things to note about the tests:

11

e The supplied results were generated using the gfortran DEBUG build.

e Comparisons between DEBUG and PRODUCTION builds can be different due to various compiler switches
that modify floating point arithmetic (e.g. optimisation levels), or different hardware.

e For test failures, you can view the differences between the generated and supplied ASCII output files. For
example, to view the K-matrix Examplel _Simple test case differences for the amsua metop-a sensor you
would do something like:

$ cd test/k_matrix/Examplel_Simple
$ diff -u amsua_metop-a.output results/amsua_metop-a.output | more

where the amsua metop-a.output file is generated during the test run, and the results/amsua metop-a.output

file is supplied with the CRTM tarball.

e The differences that typically result are quite small (of the order of microKelvin or less when there is
a noticable difference in the computed brightness temperatures), although not always at the numerical
precision limit.

e A graphical differencing tool such as tkdiff, meld, or FileMerge/opendiff (on Mac OSX) is recommended
for viewing the dile differences.

3.6 Installing the library

A very simple install target is specified in the supplied makefile to put all the necessary include files (the generated
*.mod files containing all the procedure interface information) in an /include subdirectory and the library itself
(the generated 1ibCRTM. a file) in a /1ib subdirectory. The make command is

make install

The /include and /1ib subdirectories can then be copied/moved/linked to a more suitable location on your
system, for example: $HOME/local/CRTM

NOTE: Currently, running the tests also invokes this install target. That will change in future tarball releases
so do not rely on the behaviour.

3.7 Clean Up

Two cleanup targets are provided in the makefile:

make clean

Removes all the compilation and link products from the 1ibsrc/ directory.

make distclean

This does the same as the “clean” target but also deletes the library and include directories created by the
“install” target.

12

http://tkdiff.sourceforge.net/
http://meldmerge.org/

3.8 Linking to the library

Let’s assume you’ve built the CRTM library and placed the /include and /1ib subdirectories in your own local
area, $HOME/local/CRTM. In the makefile for your application that uses the CRTM, you will need to add

-I$HOME/local/CRTM/include
to your list of compilation switches, and the following to your list of link switches,

-L$HOME/local/CRTM/1ib -1CRTM

13

How to use the CRTM library

This section will hopefully get you started using the CRTM library as quickly as possible. Refer to the following
sections for more information about the structures and interfaces.

There are many variations in what information is known ahead of time (and by “ahead of time” we mean at
compile-time of your code), so we’ll approach this via examples where pretty much all the dimensional information
is unknown. It’s a little more effort to set up, but makes for more flexible applications. Of course, for simplicity,
one can choose to hardwire dimensions (e.g. number of profiles, number of sensors, etc) in their calling code.
It is left as an exercise to the reader to tailor calls to the CRTM in their application code according to their
particular needs.

With regards to sensor identification, the CRTM uses a character string — refered to as the Sensor_Id — to distin-
guish sensors and platforms. The lists of currently supported sensors, along with their associated Sensor_Id’s,
are shown in appendix B.

4.1 Access the CRTM module

All of the CRTM user procedures, parameters, and derived data type definitions are accessible via the con-
tainer module CRTM_Module. Thus, one needs to put the following statement in any calling program, module or
procedure,

USE CRTM_Module

Once you become familiar with the components of the CRTM you require, you can also specify an ONLY clause
with the USE statement,

USE CRTM_Module[, ONLY:only-list]

where only-list is a list of the symbols you want to “import” from CRTM Module. This latter form is the preferred
style for self-documenting your code; e.g. when you give the code to someone else, they will be able to identify
from which module various symbols in your code originate.

4.2 Declare the CRTM structures

To compute satellite radiances you need to declare structures for the following information,

1. Atmospheric profile data such as pressure, temperature, absorber amounts, clouds, aerosols, etc. Handled
using the Atmosphere structure.

2. Surface data such as type of surface, temperature, surface type specific parameters etc. Handled using the
Surface structure.

14

3. Geometry information such as sensor scan angle, zenith angle, etc. Handled using the Geometry structure.

4. Instrument information, particularly which instrument(s), or sensor(s)!, you want to simulate. Handled
using the ChannelInfo structure.

5. Results of the radiative transfer calculation. Handled using the RTSolution structure.

6. Optional inputs. Handled using the Options structure.

Let’s look at the general case where we want to construct CRTM calls where all of the relevant dimensions can
be dynamically set. So, first define some variables to hold the dimension values,

! Dimension variable

INTEGER :: n_channels ! 1 =1, ... , L
INTEGER :: n_profiles !m =1, ... , M
INTEGER :: n_sensors !'n=1, ... , N

For this general case, all of the CRTM structure array definitions will be allocatable. The forward model
declarations would look something like,

! Processing parameters

CHARACTER (20) , ALLOCATABLE :: semnsor_id(:) ! N
TYPE(CRTM_ChannelInfo_type) , ALLOCATABLE :: chinfo(:) ' N
TYPE(CRTM_Geometry_type) , ALLOCATABLE :: geo(:) ' M
TYPE(CRTM_Options_type) , ALLOCATABLE :: opt(:) ' M

! Forward declarations

TYPE(CRTM_Atmosphere_type) , ALLOCATABLE :: atm(:) ' M
TYPE(CRTM_Surface_type) , ALLOCATABLE :: sfc(:) ' M
TYPE(CRTM_RTSolution_type) , ALLOCATABLE :: rts(:,:) 'L xM

If you are also interested in calling the K-matrix model, you will also need the following declarations,

! K-Matrix declarations

TYPE(CRTM_Atmosphere_type) , ALLOCATABLE :: atm_K(:,:) ! L x M
TYPE(CRTM_Surface_type) , ALLOCATABLE :: sfc_K(:,:) ! L x M
TYPE(CRTM_RTSolution_type) , ALLOCATABLE :: rts_K(:,:) ! L x M

4.3 Initialise the CRTM

The CRTM is initialised by calling the CRTM_Init () function. This loads all the various coefficient data used
by CRTM components into memory for later use. The CRTM initialisation is profile independent, so we’re only
dealing with sensor information here. As such, we have to allocate the sensor_id and chinfo arrays to handle
the number of sensors we want to process. Most users set this value to one (i.e. process a single sensor for each
CRTM initialisation) but for this example we’ll set it to siz and use the various MetOp-A sensors: AMSU-A,
MHS, HIRS/4, IASI, and AVHRR/3. Why not five? Keep reading...

The array allocations would look like,

INTEGER :: alloc_stat

! Allocate sensor arrays

IThe terms “instrument” and “sensor” are used interchangeably in this document.

15

n_sensors = 6
ALLOCATE(sensor_id(n_sensors), &
chinfo(n_sensors), &
STAT = alloc_stat)
IF (alloc_stat /= 0) THEN
handle error...
END IF

Referring to appendix B, we can now fill the sensor_id array with the sensor identifiers that the CRTM under-
stands,

sensor_id = (/ ’amsua_metop-a’ , &
’mhs_metop-a’ , &
’hirs4_metop-a’ , &
’iasi_metop-a’ , &
>avhrr3_metop-a’ , &
’v.avhrr3_metop-a’ /)

Note the last sensor identifier with the “v.” prefix — indicating a visible wavelength sensor. Currently the CRTM
treats visible channels as a separate instrument from infrared channels in those cases where the same sensor has
both.2 This is why the five sensors required six sensor identifiers.

Now that we have our input sensor_id array defined, we can call the CRTM initialisation function,

INTEGER :: err_stat

err_stat = CRTM_Init(sensor_id, chinfo)
IF (err_stat /= SUCCESS) THEN

handle error...
END IF

Here we see for the first time how the main CRTM functions let you know if they were successful. As you
can see the CRTM_Init () function result is an error status that is checked against a parameterised integer error
code, SUCCESS. The function result should not be tested against the actual value of the error code, just its
parameterised name. Other available error code parameters are FAILURE, WARNING, and INFORMATION — although
the latter is never used as a function result.

The CRTM_Init () function called shown above illustrates the simplest call interface assuming the default value
for all the optional arguments. Some examples of the use of these optional arguments are shown below.

4.3.1 Where are the coefficient data files?
The default setup for the CRTM initialisation function is that all of the coefficient data files reside in the directory
from which the calling program was invoked.

That situation is rarely the case. To get the CRTM initialisation to use a different location for the coefficient
files, you use the optional File Path argument. For example, let’s assume that all the required datafiles reside
in the subdirectory ./coeff_data. The initialisation call would look like,

INTEGER :: err_stat

21t is a lower priority, but this will likely be changed in future CRTM releases as it exposes a wee bit too much of the internal
CRTM plumbing to the user.

16

err_stat = CRTM_Init(sensor_id, chinfo, &
File_Path = ’./coeff_data’)
IF (err_stat /= SUCCESS) THEN
handle error...
END IF

4.3.2 No clouds or aerosols?

If you know ahead of time that your CRTM usage will not require the computation of cloud and/or aerosol
scattering quantities, you can use the optional Load_CloudCoeff and Load_AerosolCoeff logical arguments to
the CRTM_-Init () function to prevent the cloud and/or aerosol optical properties look-up tables (LUTSs) being
read in. For example, the syntax to load the cloud, but not the aerosol, LUTs would be something like,

INTEGER :: err_stat

err_stat = CRTM_Init(sensor_id, chinfo, &
Load_CloudCoeff
Load_AerosolCoeff
IF (err_stat /= SUCCESS) THEN
handle error...
END IF

.TRUE., &
.FALSE.)

4.3.3 What surface emissivity model?

The data required for some of the surface emissivity models are also loaded via files (in others the data are
hard-coded into the source modules.) Table 4.1 shows the choices available during initialisation for setting up
the surface emissivity models.

Table 4.1: Choices available for setup of the various emissivity/reflectivity models during CRTM
initialisation. TDefault file loaded if optional argument not specified. *The same classification scheme
file should be loaded for both the infrared and visible land surface emissivity model.

Emissivity or Reflectivity Optional argument Auvailable files
Model

NPOESS.IRland.EmisCoeff.binf
Infrared Land* IRlandCoeff File USGS.IRland.EmisCoeff.bin
IGBP.IRland.EmisCoeff.bin

Nalli.IRwater.EmisCoeff.binf
WuSmith.IRwater.EmisCoeff.bin

Infrared Water IRwaterCoeff File

FASTEMS5 . MWwater . EmisCoeff .bin'
FASTEM4 .MWwater.EmisCoeff.bin

Microwave Water MWwaterCoeff File

NPOESS.VISland.EmisCoeff.bin'
Visible Land* VISlandCoeff File USGS.VISland.EmisCoeff.bin
IGBP.VISland.EmisCoeff.bin

An example of specifying different data files for all the models listed in table 4.1 is shown below,

INTEGER :: err_stat

17

err_stat = CRTM_Init(sensor_id, chinfo, &
IRlandCoeff_File ’>IGBP.IRland.EmisCoeff.bin’, &
IRwaterCoeff_File = ’WuSmith.IRwater.EmisCoeff.bin’, &
MWwaterCoeff_File ’FASTEM4 .MWwater .EmisCoeff.bin’, &
VISlandCoeff _File >IGBP.VISland.EmisCoeff.bin’)

IF (err_stat /= SUCCESS) THEN

handle error...
END IF

It must be pointed out that you should specify the same classification file for the infrared and visible land surface
emissivity models. For example, do not initialise the infrared land model with the USGS file and the visible land
model with the IGBP file. This is because the allowed surface types are now stored in the file and mixing the
allowable surface types could cause unexpected results. See section 4.6 below regarding the specification of the
surface type via the Surface structure.

4.3.4 | don't want to process all of the channels!

Prior to v2.1, once the CRTM was initialised for a sensor, the calculations were performed for all of the channels
of that sensor. There is now a capability to dynamically select the channels to process. This is done after a
CRTM initialisation has occurred but is mentioned here as the ChannelInfo structure is modified to achieve
this.

A new series of functions that operate on the ChannelInfo structure have been included that allow you to select
the channel to process. For example, let’s say you only want to process channels 1000-1100 of hte MetOp-A TASI
instrument in our example. This can be achieved via a call to the CRTM_ChannelInfo_Subset function,

INTEGER :: i

! Specify an IASI channel subset for processing example
err_stat = CRTM_ChannelInfo_Subset(chinfo(4), &
Channel_Subset = (/(i,i=1000,1100)/))
IF (err_stat /= SUCCESS) THEN
handle error...
END IF

where the chinfo(4) references the ChannelInfo structure for IASI from the initialisation.

And one more example for subsetting AMSU-A (i.e. chinfo(1)) where we only want to process channels 5-8,

! Specify an AMSU-A channel subset for processing example
err_stat = CRTM_ChannelInfo_Subset(chinfo(1), &
Channel_Subset = (/5,6,7,8/))
IF (err_stat /= SUCCESS) THEN
handle error...
END IF

You can call this function as many times as you like with different channel sets for different sensors. If you do
want to process all the sensors channels after selecting a subset, you can easily go back to all-channel processing
by using the optional Reset logical argument,

18

! Reset back to all-channel processing
err_stat = CRTM_ChannelInfo_Subset(chinfo(l), &
Reset = .TRUE.)
IF (err_stat /= SUCCESS) THEN
handle error...
END IF

The Reset argument overrides any channel subset specification.

One more thing: because the total number of channels to be processed can now vary dynamically, there is also
a “channel counter” function to determine how many channels will be processed. It is an elemental® function so
you can call it for a single ChannelInfo entry,

! Count the number of IASI channels to be processed
n_Channels = CRTM_ChannelInfo_n_Channels(chinfo(4))

or you can call it for all the sensors defined in the ChannelInfo array chinfo,

! Count the number of ALL the channels to be processed
n_Total_Channels = SUM(CRTM_ChannelInfo_n_Channels(chinfo))

4.4 Allocate the CRTM arrays

The first step is to allocate all of the structure arrays to the required size. For our example, let’s assume we’ll
be processing sets of 50 atmospheric profiles, and return to some of the other structure arrays defined in section
4.2

INTEGER :: alloc_stat

! Allocate profile-only arrays

n_profiles = 50

ALLOCATE(geo(n_profiles), &
opt(n_profiles), &
atm(n_profiles), &
sfc(n_profiles), &
STAT = alloc_stat)

IF (alloc_stat /= 0) THEN

handle error...
END IF

But what about the RTSolution structure array, rts, which has the dimensions n_channels X n_profiles? Or
the K-matrix arrays atm K, sfc K, and rts_K? How many channels should be used in their allocation?

The answer is simple, even if mildly unsatisfying: while there is nothing to preclude you from allocating the
channel-dependent structure arrays for all the channels the number of channels for the rts allocation
should be for a single sensor. Why? Well, primarily because it is unlikely that the data in the other input
structure arrays can (should?) be considered the same for the other sensors — even if they are on the same
platform. The simplest example is the Geometry structure array, geo, where the sensor scan geometry is going
to be quite different for different sensors on the same platform. Similarly for the Surface structure array, sfc,
where different sensor field-of-view (FOV) geometries will lead to different surface properties.

3An elemental procedure may be called with scalar arguments or conformable array arguments of any rank.

19

So now we introduce a channel-dependence to the usage of the CRTM input structure arrays. Starting with their
allocation, let’s put these in a loop over sensor, and use the CRTM_ChannelInfo n Channels from the previous
section,

INTEGER :: n
Sensor_Loop: DO n = 1, n_sensors

! Get the number of channels to process for current sensor
n_channels = CRTM_ChannelInfo_n_Channels(chinfo(n))

! Allocate channel-dependent arrays

ALLOCATE(rts(n_channels, n_profiles) , &
atm_K(n_channels, n_profiles), &
sfc_K(n_channels, n_profiles), &
rts_K(n_channels, n_profiles), &
STAT = alloc_stat)

IF (alloc_stat /= 0) THEN

handle error...
END IF

END DO Sensor_Loop

4.5 Create the CRTM structures

Now we need to create instances of the various CRTM structures where necessary to hold the input or output
data.

Subroutines are used to perform the necessary creation of the CRTM structures by allocating the internal compo-
nents. The procedure naming convention is CRTM_object_Create where, for typical usage, the CRTM structures
that need to be allocated are the Atmosphere, RTSolution and, if used, Options structures. Potentially, the
SensorData component of the Surface structure may also need to be allocated to allow for input of sensor
observations for some of the NESDIS microwave surface emissivity models.

The CRTM_object_Create procedures are always elemental and can be invoked for scalar or conformable arrays
arguments.

4.5.1 Allocation of the Atmosphere structures
First, we’ll allocate the atmosphere structures to the required dimensions. For simplicity, let’s assume that the

number of layers, gaseous absorbers, clouds, and aerosols are the same for all the profiles. The creation of the
forward atmosphere structures is done like so,

INTEGER :: n_layers, n_absorbers
INTEGER :: n_clouds, n_aerosols

! Some default dimensions

n_layers = 64
n_absorbers = 2
n_clouds =1
n_aerosols = 2

20

! Allocate the forward atmosphere structures

CALL CRTM_Atmosphere_Create(atm , &
n_layers , &
n_absorbers, &
n_clouds , &
n_aerosols)

! Check they were created successfully

IF (ANY(.NOT. CRTM_Atmosphere_Associated(atm))) THEN
handle error...

END IF

and the K-matrix structures can be allocated by looping over all profiles,

INTEGER :: m

! Allocate the K-matrix atmosphere structures
DO m =1, n_profiles
CALL CRTM_Atmosphere_Create(atm_k(:,m) , &
n_layers , &
n_absorbers, &
n_clouds , &
n_aerosols)
! Check they were created successfully
IF (ANY(.NOT. CRTM_Atmosphere_Associated(atm_k(:,m)))) THEN
handle error...
END IF
END DO

The CRTM_Atmosphere_Create function is defined as elemental so the profile loop is not strictly needed. The
above K-matrix creation example is equivalent to

! Allocate the K-matrix atmosphere structures

CALL CRTM_Atmosphere_Create(atm_k , &
n_layers , &
n_absorbers, &
n_clouds , &
n_aerosols)

! Check they were created successfully

IF (ANY(.NOT. CRTM_Atmosphere_Associated(atm_k))) THEN
handle error...

END IF

Note that for the ODAS algorithm the allowed number of absorbers is at most two: that of HoO and Oz. For
the ODPS algorithm COy can also be specified. For the infrared hyperspectral sensors (AIRS, TASI, and CrIS)
the trace gases CHy4, NoO, and CO can also be specified as absorbers.

4.5.2 Allocation of the RTSolution structure

To return additional information used in the radiative transfer calculations, such as upwelling radiance and layer
optical depth profiles, the RTSolution structure must be allocated to the number of atmospheric layers used,

21

! Allocate the RTSolution structure
CALL CRTM_RTSolution_Create(rts , &
n_layers)
! Check they were created successfully
IF (ANY(.NOT. CRTM_RTSolution_Associated(rts))) THEN
handle error...
END IF

Note that internal checks are performed in the CRTM to determine if the RTSolution structure has been allocated
before its array components are accessed. Thus, if the additional information is not required, the RTSolution
structure does not need to be allocated. Also, the extra information returned is only applicable to the forward
model, not any of the tangent-linear, adjoint, or K-matrix models.

4.5.3 Allocation of the Options structure

If user-supplied surface emissivity data is to be used, then the options structure must first be allocated to the
necessary number of channels:

! Allocate the options structures
CALL CRTM_Options_Create(opt , &
n_channels)
! Check they were created successfully
IF (ANY(.NOT. CRTM_Options_Associated(opt))) THEN
handle error...
END IF

If no emissivities are to be input, the options structure does not need to be allocated.

4.6 Fill the CRTM input structures with data

This step simply entails filling the input Atmosphere (including Cloud and Aerosol), Surface, Geometry, and,
if used, Options structures with the required information. Sound simple? Read on...

4.6.1 Filling the Atmosphere structure with data

The elements of the Atmosphere structure, and their description, are shown in table 4.2. The modifiers such as
“(1:J)” and “(1:nA)” are an indication of the allocatable range of the components. Similar descriptions of the
Cloud and Aerosol structures are show in tables 4.3 and 4.4 respectively.

Some issues to mention with populating the Atmosphere structure
e In the CRTM, all profile layering is from top-of-atmosphere (TOA) to surface (SFC). So, for an atmospheric
profile layered as k = 1,2, ..., K, layer 1 is the TOA layer and layer K is the SFC layer.
e Both the level and layer pressure profiles must be specified.

e The absorber profile data units must be mass mixing ratio for water vapour and volume mixing ratio
(ppmv) for other absorbers. The Absorber Units component is not yet utilised to allow conversion of
different user-supplied concentration units.

22

Table 4.2: CRTM Atmosphere structure component description.

Component Description Units Default value
n Layers Number of atmospheric layers, K N/A N/A
n_Absorbers Number of gaseous absorbers, J N/A N/A
n_Clouds Number of clouds, nC N/A N/A
n_Aerosols Number of aerosol species, nA N/A N/A
Climatology Climatology model associated with the profile. N/A US_STANDARD_ATMOSPHERE
See table 4.5.
Absorber_ID(1:J) Absorber identifiers. See table 4.6. N/A N/A
Absorber Units(1:J) Absorber concentration unit identifiers. See N/A N/A
table 4.7.
Level Pressure(0:K) Level pressure profile hPa N/A
Pressure(1:K) Layer pressure profile hPa N/A
Temperature (1:K) Layer temperature profile Kelvin N/A
Absorber (1:K,1:J) Layer absorber concentraton profiles Variable N/A
Cloud(1:nC) Clouds associated with the profile N/A N/A
Aerosol(1:nA) Aerosol species associatedwith the profile N/A N/A

Table 4.3: CRTM Cloud structure component description.

Component Description Units Default value
n_Layers Number of atmospheric layers, K N/A N/A
Type The supported cloud type. See table 4.8. N/A INVALID_CLOUD
Effective Radius(1:K) Cloud particle effective radius profile pm N/A
Water _Content (1:K) Cloud water content profile kg.m~?2 N/A

Table 4.4: CRTM Aerosol structure component description.

Component Description Units Default value
n_Layers Number of atmospheric layers, K N/A N/A

Type The supported aerosol type. See table 4.9. N/A INVALID_AEROSOL
Effective Radius(1:K) Aerosol particle effective radius profile pm N/A
Concentration(1:K) Aerosol concentration profile kg.m~? N/A

23

Table 4.5: CRTM Atmosphere structure valid Climatology definitions. The same set as defined
for LBLRTM is used.

Climatology Type Parameter
Tropical TROPICAL
Midlatitude summer MIDLATITUDE_SUMMER
Midlatitude winter MIDLATITUDE_WINTER
Subarctic summer SUBARCTIC_SUMMER
Subarctic winter SUBARCTIC_WINTER

U.S. Standard Atmosphere US_STANDARD_ATMOSPHERE

Table 4.6: CRTM Atmosphere structure valid Absorber_ID definitions. The same molecule set as
defined for HITRAN is used.

Molecule Parameter Molecule Parameter Molecule Parameter
H50 H20_ID OH OH_ID H50, H202_ID
COq C02_1ID HF HF_ID CoH, C2H2_ID

O3 03_ID HCl HC1_ID CoHg C2H6_ID
N,O N20_ID HBr HBr_ID PH; PH3_ID
CO C0_ID HI HI_ID COF, COF2_ID
CHy CH4_ID ClO C10_ID SEs SF6_ID
Oq 02_ID 0Cs 0CS_ID HoS H25_ID
NO NO_ID H,CO H2CO0_ID HCOOH HCOOH-ID
SO2 S02_ID HOCI HOC1_ID
NO, NO2_ID Ny N2_ID
NHj; NH3_ID HCN HCN_ID
HNO; HNO3_ID CH;l CH31_ID

Table 4.7: CRTM Atmosphere structure valid Absorber Units definitions. The same set as
defined for LBLRTM is used.

Absorber Units Parameter
Volume mixing ratio, ppmv VOLUME_MIXING_RATIO_UNITS
Number density, cm ™3 NUMBER _DENSITY UNITS
Mass mixing ratio, g/kg MASS _MIXING_RATIO_UNITS
Mass density, g.m™> MASS_DENSITY_UNITS
Partial pressure, hPa PARTIAL PRESSURE UNITS

Dewpoint temperature, K (H,O ONLY) DEWPOINT_TEMPERATURE_K_UNITS
Dewpoint temperature, C (H,O ONLY) DEWPOINT_TEMPERATURE_C_UNITS
Relative humidity, % (H20 ONLY) RELATIVE_HUMIDITY_UNITS
Specific amount, g/g SPECIFIC_AMOUNT_UNITS
Integrated path, mm INTEGRATED _PATH UNITS

24

Table 4.8: CRTM Cloud structure valid Type definitions.

Cloud Type Parameter
Water WATER_CLOUD
Ice ICE_CLOUD
Rain RAIN_CLOUD
Snow SNOW_CLOUD
Graupel GRAUPEL_CLQOUD
Hail HAIL_CLOUD

Table 4.9: CRTM Aerosol structure valid Type definitions and effective radii, based on the GO-
CART model. SSAM = Sea Salt Accumulation Mode, SSCM = Sea Salt Coarse Mode.

Aerosol Type Parameter rer; Range (um)
Dust DUST_AEROSOL 0.01 -8
Sea salt SSAM SEASALT_SSAM_AEROSOL 0.3-1.45
Sea salt SSCM1 SEASALT_SSCM1_AEROSOL 1.0 - 4.8
Sea salt SSCM2 SEASALT_SSCM2_AEROSOL 3.25-17.3
Sea salt SSCM3 SEASALT_SSCM3_AEROSOL 7.5 -89
Organic carbon ORGANIC_CARBON_AEROSOL 0.09 - 0.21
Black carbon BLACK_CARBON_AEROSOL 0.036 - 0.074
Sulfate SULFATE_AEROSOL 0.24 - 0.8

e The Absorber_Id array must be set to the correct absorber identifiers (see table 4.6) to allow the software to
find a particular absorber. There is no necessary order in specifying the concentration profiles for different
gaseous absorbers.

An example of assigning values to an Atmosphere structure is shown below, adapted and abridged from one of
the test/example programs supplied with the CRTM,

! ...Profile and absorber definitions
atm(1)%Climatology = US_STANDARD_ATMOSPHERE
atm(1)%Absorber_Id(1:2) (/ H20_ID

, 03_ID /)

atm(1)%Absorber_Units(1:2)
! ...Profile data
atm(1)%Level_Pressure = &

(/ 0.714_fp, 0.975_fp,

atm(1)%Pressure = &
(/ 0.838_fp, 1.129_fp,

atm(1)%Temperature = &
(/ 256.186_fp, 252.608_fp,

atm(1)%Absorber(:,1) = &

(/ 4.187e-03_fp, 4.401e-03_1p,

atm(1)%Absorber(:,2) = &
(/ 3.035_fp, 3.943_fp,

(/ MASS_MIXING_RATIO_UNITS, VOLUME_MIXING_RATIO_UNITS /)

, 1070.917_fp, 1100.000_fp /)

, 1056.510_fp, 1085.394_fp /)

, 273.356_fp, 273.356_fp /)

, 3.172_fp, 3.087_fp /)

, 1.428e-02_fp, 1.428e-02_fp /)

25

! ...Load CO2 absorber data if there are three absorrbers

IF (atm(1)%n_Absorbers > 2) THEN
atm(1)%Absorber_Id(3) = C02_ID
atm(1)%Absorber_Units(3) VOLUME_MIXING_RATIO_UNITS
atm(1)%Absorber(:,3) 380.0_fp

END IF

The allowable definitions of the Climatology, Absorber_Id, and Absorber Units components are shown in
tables 4.5, 4.6, and 4.7 respectively. Even though the Absorber Units component is not currently used in the
v2.1 CRTM it is recommended that it still be set in Atmosphere structures to accommodate future CRTM
versions that do utilise it.

The cloud and aerosol data for a given atmospheric profile are specified via the contained Cloud and Aerosol
structure arrays. Continuing with the example assignment, we could do the following for our single cloud,

INTEGER :: k1, k2

! Assign cloud data

k1 = 55 | Begin cloud layer

k2 = 62 ! End cloud layer
atm(1)%Cloud(1)%Type = WATER_CLOUD

atm(1)%Cloud (1) %Effective_Radius(k1:k2) = &

(/ 20.14_fp, 19.75_fp, , 12.49_fp, 11.17_fp /) ! micromns
atm(1)%Cloud (1) %Water_Content (k1:k2) =&
(/ 5.09_fp, 3.027_fp, , 1.56_fp, 2.01_fp /) ! kg/m”Q

and for our multiple aerosols,

! Assign aerosol data

! ...First aerosol

k1 21 ! Begin aerosol layer

k2 = 64 ! End aerosol layer
atm(1)%Aerosol(1)%Type = DUST_AEROSOL

atm(1)%Aerosol (1)%Effective_Radius(k1:k2) = &

(/7.340409e-16_fp, 1.037097e-15_fp, , 2.971053e-03_fp, 8.218245e-04_fp/) ! microns
atm(1)%Aerosol(1)%Concentration(kl:k2) = &
(/2.458105E-18_fp, 1.983430E-16_fp, , 7.418821E-05_fp, 1.172680E-05_fp/) ! kg/m"2

! ...Second aerosol

k1 = 48 ! Begin aerosol layer

k2 = 64 ! End aerosol layer
atm(1)%Aerosol(2)%Type = SULFATE_AEROSOL

atm(1)%Aerosol (2)%Effective_Radius(k1:k2) = &

(/3.060238E-01_fp, 3.652677E-01_fp, , 5.570077E-01_fp, 3.828734E-01_fp/) ! microns
atm(1)%Aerosol(2)%Concentration(kl:k2) = &
(/2.609907E-05_fp, 2.031620E-05_fp, , 1.095622E-04_fp, 7.116027E-05_fp/) ! kg/m~2

The allowable definitions of the cloud and aerosol type components are shown in tables 4.8 and 4.9 respectively.
Currently these are the only cloud and aerosol types supported by the CRTM. Future planned enhancements

26

are to support multiple aerosol type classifications (e.g. from the GOCART* and CMAQ® models).

One final note regarding clouds and aerosols (although we’ll use just clouds as an example here). Let’s assume
for a given atmospheric profile we have cloud data specifying a water cloud near the surface (say from layers
60-64) and the same type of cloud higher in the troposphere (say from layers 52-57). You could define this as a
single cloud like so,

! Assign multiple level cloud data in a single cloud structure
atm(1)%Cloud(1)%Type = WATER_CLOUD

k1 = 52 ! Begin cloud layer 1

k2 = 57 ! End cloud layer 1
atm(1)%Cloud(1)%Effective_Radius(k1:k2)
atm(1)%Cloud(1)%Water_Content (kl:k2)

k1 = 60 ! Begin cloud layer 2

k2 = 64 ! End cloud layer 2
atm(1)%Cloud(1)%Effective_Radius(k1:k2)
atm(1)%Cloud(1)%Water_Content (k1:k2)

or you could define it in separate cloud structures like so,

! Assign multiple level cloud data in separate cloud structures
k1 = 52 ! Begin cloud 1 layer

k2 = 57 ! End cloud 1 layer
atm(1)%Cloud(1)%Type = WATER_CLOUD
atm(1)%Cloud(1)%Effective_Radius(k1:k2)
atm(1)%Cloud(1)%Water_Content (kl:k2)

k1 = 60 ! Begin cloud 2 layer

k2 = 64 ! End cloud 2 layer
atm(1)%Cloud(2)%Type = WATER_CLOUD
atm(1)%Cloud(2)%Effective_Radius(k1:k2)
atm(1)%Cloud(2)%Water_Content (kl:k2)

That is, for the same type of cloud there is no difference between specifying multiple layers in a single structure, or
specifying multiple structures that contain a single layer. The two “styles” of definition are equivalent. Similarly
for aerosols.

4.6.2 Filling the Surface structure with data

The Surface structure is designed around four main surface types: Land, Water, Snow, and Ice. As you can see
in table 4.10, for each of these main surface types there are components that define the surface characteristics.
This division of surface types and the required surface characteristics are based upon the way surface emissivity
and reflectivity models have been constructed in the past. It is also complicated by the fact that for the different
spectral regions that the CRTM models — infrared, microwave, and visible — the surface emissivity and reflectivity
modeling has to be handled differently as different processes are more important in different spectral regions.
As such, it is important that users understand what needs to set in a Surface structure for a given surface type
and spectral region. We will also assume that a Surface structure corresponds to a sensor field-of-view (FOV).

The specification of the actual physical surface characteristics in a Surface structure (e.g. temperature, wind
speed, soil moisture, etc) is relatively straightforward and won’t be covered in detail here. What we’ll look into
are those items that are specific (or peculiar?) to the CRTM implementation of emissivity and reflectivity models
and how they influence the definition of the Surface structure.

4Goddard Chemistry Aerosol Radiation and Transport
5Community Multiscale Air Quality

27

Table 4.10: CRTM Surface structure component description.

Component Description Units Default value
Land_Coverage Fraction of the FOV that is land surface N/A 0.0
Water_Coverage Fraction of the FOV that is water surface N/A 0.0
Snow_Coverage Fraction of the FOV that is snow surface N/A 0.0
Ice_Coverage Fraction of the FOV that is ice surface N/A 0.0
Land_Type Land surface type N/A 1
Land_Temperature Land surface temperature Kelvin 283.0
Soil Moisture Content Volumetric water content of the soil g.cm ™3 0.05
Canopy_Water_Content Gravimetric water content of the canopy g.cm ™3 0.05
Vegetation Fraction Vegetation fraction of the surface % 0.3
Soil_Temperature Soil temperature Kelvin 283.0
LAT Leaf area index m?/m? 3.5
Soil_Type Soil type N/A 1
Vegetation Type Vegetation type N/A

Water_Type Water surface type N/A 1
Water_Temperature Water surface temperature Kelvin 283.0
Wind_Speed Surface wind speed m.s~! 5.0
Wind Direction Surface wind direction deg. E from N 0.0
Salinity Water salinity Y00 33.0
Snow_Type Snow surface type N/A 1
Snow_Temperature Snow surface temperature Kelvin 263.0
Snow_Depth Snow depth mm 50.0
Snow_Density Snow density g.m™3 0.2
Snow_Grain_Size Snow grain size mm 2.0
Ice_Type Ice surface type N/A 1
Ice_Temperature Ice surface temperature Kelvin 263.0
Ice_Thickness Thickness of ice mm 10.0
Ice Density Density of ice g.m™3 0.9
Ice_Roughness Measure of the surface roughness of the ice N/A 0.0
SensorData Satellite sensor data required for empirical mi- N/A N/A

crowave snow and ice emissivity algorithms

28

The first thing to address are the coverage fractions. The CRTM allows the specification of a combination of
the main surface types. Let’s say we have a FOV that consists of 10% land, 50% water, 25% snow, and 15% ice.
The specification of these fractions in the surface structure would look like so:

! Assign main surface type coverage fractions
sfc(1)%Land_Coverage = 0.1_fp
sfc(1)¥%Water_Coverage = 0.5_fp
sfc(1)%Snow_Coverage 0.25_fp
sfc(1)%Ice_Coverage 0.15_fp

Whatever the surface coverage combination, the sum of the coverage fractions must add up to 1.0. Otherwise
the CRTM will issue an error message and return with a FAILURE error status.

Now we’ll look at the specification of the subtypes of the main surface types, with a particular focus on the land
surface subtypes. Table 4.11 shows the number of valid surface subtypes available for the different surface and
spectral categories in v2.1. As can be seen for land surfaces, some care is required to ensure correct specification
of the subtype specification(s). The situation is much simpler for the other surface types (water, snow and ice)
and, for microwave sensors, is simplified further since no subtype even need be defined due to the surface optics
models used.

Table 4.11: Number of valid surface types available for the different surface and spectral categories.
“Same IR and VIS reflectivity source, NPOESS. ®Surface type reflectivities mapped from NPOESS
classification. °Different land classifications for IR and VIS defined at CRTM initialisation. ?These
are specified separately from the generic surface type in the input Surfacestructure and are used
to index arrays containing various physical quantities for the soil /vegetation type — both must be

specified.
Spectral category Land® Water Snow Ice

NPOESS(20)

Infrared USGS(27)%? CRTM(1) CRTM(2)* CRTM(1)®
IGBP(20)%?

. Soil type(9)? Parameterized = Empirical =~ Empirical

Microwave Vegetation type(13)* physical model model model

NPOESS(20)

Visible USGS(27)%? CRTM(1) CRTM(2)* CRTM(1)®
IGBP(20)%°

Land surface subtypes for infrared and visible sensors

In the v2.0.x CRTM releases, there was only one allowable set of surface subtypes allowed. For the land surface
type in the infrared and visible spectral regions, that was the NPOESS® set. However, different land surface
classification schemes (USGS” and IGBP®) were being used in various applications that called the CRTM,
requiring users to generate a mapping from their surface classification scheme to that of the CRTM (i.e. the
NPOESS classification). In an effort to simplify the use of different land subtype classification systems with the
CRTM, separate datafiles contining the reflectivity data for the different classification schemes are now provided
(see section 4.3 regarding the use of these data files during CRTM initialisation). Thus you need only initialise
the CRTM with the data files for your land subtype classification scheme of choice to use that scheme.

6National Polar-orbiting Operational Environmental Satellite System. Now called the Joint Polar Satellite System, or JPSS.
7U.S. Geological Survey
8International Geosphere-Biosphere Programme

29

The downside of this change is that parameterised values of the surface subtypes can no longer be used since,
depending on how the CRTM was initialised, the same parameterised value can be used as an index for different
classification schemes — in which the index may not exist, or — even worse —refer to a different land subtype giving
a plausibly wrong result. Thus, you should study the allowable subtype index values for the NPOESS, USGS,
and IGBP classifications schemes shown in tables 4.12, 4.13, and 4.14 respectively to ensure you are selecting
the correct land subtype.

Table 4.12: Surface type names and their index value for the NPOESS land surface classification
scheme. Applicable for infrared and visible spectral regions only.

NPOESS Classification Scheme

Surface Type Name Classification Index
compacted soil 1
tilled soil 2
sand 3
rock 4
irrigated low vegetation)
meadow grass 6
scrub 7
broadleaf forest 8
pine forest 9
tundra 10
grass soil 11
broadleaf pine forest 12
grass scrub 13
soil grass scrub 14
urban concrete 15
pine brush 16
broadleaf brush 17
wet soil 18
scrub soil 19
broadleaf70 pine30 20

As an example, if the CRTM was initialised with the NPOESS classification data and the surface type was
considered “urban”, consultation of table 4.12 would yield the following assignment,

! Assign urban land surface subtype for NPOESS classification
sfc(1)%Land_Type = 15

Similarly, if the CRTM was initialised with the USGS classification data, the same assignment would be (see
table 4.13)

! Assign urban land surface subtype for USGS classification
sfc(1)YLand_Type = 1

For completeness, here is the same for the IGBP classification (see table 4.14)

! Assign urban land surface subtype for IGBP classification
sfc(1)%Land_Type = 13

30

Table 4.13: Surface type names and their index value for the USGS land surface classification
scheme. Note that the “non-land” surface types in the context of the CRTM (water, snow, or ice
at indices 16 and 24) are still included but are empty entries in the reflectivity database. Applicable
for infrared and visible spectral regions only.

USGS Classification Scheme

Surface Type Name Classification Index
urban and built-up land 1
dryland cropland and pasture 2
irrigated cropland and pasture 3
mixed dryland/irrigated cropland and pasture 4
cropland/grassland mosaic 5
cropland/woodland mosaic 6
grassland 7
shrubland 8
mixed shrubland/grassland 9
savanna 10
deciduous broadleaf forest 11
deciduous needleleaf forest 12
evergreen broadleaf forest 13
evergreen needleleaf forest 14
mixed forest 15
water bodies (empty) 16
herbaceous wetland 17
wooded wetland 18
barren or sparsely vegetated 19
herbaceous tundra 20
wooded tundra 21
mixed tundra 22
bare ground tundra 23
snow or ice (empty) 24
playa 25
lava 26
white sand 27

31

Table 4.14: Surface type names and their index value for the IGBP land surface classification
scheme. Note that the “non-land” surface types in the context of the CRTM (water, snow, or ice
at indices 15 and 17) are still included but are empty entries in the reflectivity database. Applicable
for infrared and visible spectral regions only.

IGBP Classification Scheme

Surface Type Name Classification Index
evergreen needleleaf forest 1
evergreen broadleaf forest 2
deciduous needleleaf forest 3
deciduous broadleaf forest 4
mixed forests 5
closed shrublands 6
open shrublands 7
woody savannas 8
savannas 9
grasslands 10
permanent wetlands 11
croplands 12
urban and built-up 13
cropland /natural vegetation mosaic 14
snow and ice (empty) 15
barren or sparsely vegetated 16
water (empty) 17
wooded tundra 18
mixed tundra 19
bare ground tundra 20

32

Land surface subtypes for microwave sensors

For the land surface/microwave spectral region case, the situation is a little different. The emissivity model uses
specification of the soil and vegetation type to drive the calculation; that is, both must be specified. The valid
soil and vegetation types in this case are defined by their definitions in the NCEP Global Forecast System (GFS)
and are shown in tables 4.15 and 4.16 respectively.

Table 4.15: Soil type textures and descriptions, along with their index value for the GFS classification
scheme. Applicable for the microwave spectral regions only.

GFS Soil Type Classification Scheme

Texture Description Classification Index
coarse loamy sand 1
medium silty clay loam 2
fine light clay 3
coarse-medium sandy loam 4
coarse-fine sandy clay 5
medium-fine clay loam 6
coarse-med-fine sandy clay loam 7
organic farmland 8
glacial land ice ice over land 9

Table 4.16: Vegetation type names and their index value for the GFS classification scheme. Appli-
cable for the microwave spectral regions only.

GFS Vegetation Type Classification Scheme

Vegetation Type Classification Index
broadleaf-evergreen (tropical forest) 1
broad-deciduous trees 2
broadleaf and needleleaf trees (mixed forest) 3
needleleaf-evergreen trees 4
needleleaf-deciduous trees (larch) 5
broadleaf trees with ground cover (savanna) 6
ground cover only (perennial) 7
broad leaf shrubs w/ ground cover 8
broadleaf shrubs with bare soil 9
dwarf trees & shrubs w/ground cover (tundra) 10
bare soil 11
cultivations 12
glacial 13

An example of assigning these two types for use with the microwave land emissivity model would be,

! Assign farmland soil and vegetation types for
! the microwave land emissivity model
sfc(1)%Soil_Type =38
sfc(1)%Vegetation_Type = 12

33

Water, snow, and ice surface subtypes for infrared and visible sensors

The situation for the water, snow, and ice surface subtypes in the infrared and visible spectral regions is much
simpler. There are only at most two variations for these main surface types and, for ice, there is only one. Table
4.17 lists the available subtype indices in these cases.

Table 4.17: Water, snow, and ice surface subtypes and their index value. Applicable for infrared
and visible spectral regions only.

IR/VIS Water, Snow, and Ice Classification Scheme

Surface Type Description Classification Index
Water sea water 1
old snow 1
Snow
new Snow 2
Ice new ice 1

An example of assigning these types for use with the infrared or visible water, snow, or ice emissivity models
would be,

! Assign water, snow and ice types for the
! infrared and visible emissivity models
sfc(l)%Water_Type = 1 ! Sea water
sfc(1)%Snow_Type = 2 ! New snow
sfc(1)%Ice_Type =1 ! New ice

Water, snow, and ice surface subtypes for microwave sensors

The specification of the water, snow, and ice surface subtypes is not necessary in the microwave spectral region.
Consultation of table 4.11 reveals why: for the water case, the emissivity model is a parameterised physical
model and for the snow and ice surfaces the CRTM uses empirical models. In fact, in the latter case, the snow
and ice subtypes are actually output from the models.

Specification of SensorData for microwave snow and ice emissivity models

Recall from table 4.11 that the snow and ice emissivity models for microwave sensors are empirical, i.e. they
use input sensor measurements to estimate the snow and/or ice emissivities for particular sensors®. To supply
the brightness temperatures used by the empirical emissivity model, the SensorData structure component of the
main Surface structure is used. The components of the SensorData structure are shown in table 4.18 where
the modifier “(1:L)” is the indication of the allocatable range of those components.

The values of the WMO satellite and sensor identifiers are those defined in the WMO Common Code Tables C-5
and C-8 respectively.! The WMO sensor identifier is used to select the particular sensor algorithm so you should
endeavour to correctly specify it in the SensorData structure. If an unrecognised WMO identifier is encountered

then, for snow surfaces, a default physical model is used. For ice surfaces the default is to use a fixed emissivity
of 0.92.

The sensors for which empirical snow and ice emissivity models exist, along with their WMO sensor identifiers,
are shown in table 4.19
9Supplied by NESDIS/STAR for use in the CRTM

10See http://www.wmo.int/pages/prog/www/WMOCodes/WMO306_vI2/Volumel.2.html to access the WMO Part C Common
Code Tables in various languages.

34

http://www.wmo.int/pages/prog/www/WMOCodes/WMO306_vI2/VolumeI.2.html

Table 4.18: CRTM SensorData structure component description.

Component Description Units Default value
n_Channels Number of sensor channels, L N/A 0

Sensor_Id The sensor id N/A empty string
WMO_Satellite_Id The WMO satellite Id N/A INVALID_WMO_SATELLITE_ID
WMO_Sensor_Id The WMO sensor Id N/A INVALID_WMO_SENSOR_ID
Sensor_Channel(1:L) The channel numbers N/A N/A

Tb(1:L) The brightness temperature measurements for Kelvin N/A

each channel

Table 4.19: Microwave sensors and their associated WMO sensor identifiers for which the CRTM
has empirical snow and ice emissivity models.

Sensor WMO Sensor Id Sensor WMO Sensor Id Sensor WMO Sensor Id
AMSR-E 345 AMSU-B 574 SSMIS 908
AMSU-A 570 MHS 203 SSM/1 905

Using the sensor-loop example of section 4.4, an example of specifying the brightness temperature data for the
NOAA-19 AMSU-A to use for its empirical snow or ice emissivity module would be,

INTEGER :: m, n
Sensor_Loop: DO n = 1, n_sensors

I Get the number of channels for the SensorData structure for current sensor
n_channels = chinfo(n)%n_Channels

! Allocate the SensorData structure for this sensor to use its empirical emissivity model
CALL CRTM_SensorData_Create(sfc%SensorData, &
n_channels)
! Check they were created successfully
IF (ANY(.NOT. CRTM_SensorData_Associated(sfc)SensorData))) THEN
handle error...
END IF

! Specify the sensor identifiers for all the profiles
sfcSensorData)Sensor_Id = ’amsua_nl9’
sfcSensorDatay%WMO_Satellite_Id = 223 ! From Common Code Table C-5
sfcSensorData)WMO_Sensor_Id = 570 ! From Common Code Table C-8

! Specify the brightness temperature data for the various profiles/FOVs in the Sensordata structure
Profile_Loop: DO m = 1, n_profiles

sfc(m)’%SensorDataTb = ...assign appropriate data...
END DO Profile_Loop

END DO Sensor_Loop

Note the use of the “n_channels = chinfo(n)%n_Channels” statement. The empirical snow and ice models do
not recognise the channel subsetting feature implemented in the CRTM (see section 4.3.4) and thus, to correctly

35

index the brightness temperature array, all of a particular sensor’s channels must be specified.

4.6.3 Filling the Geometry structure with data

Descriptions of the components of the Geometry structure are shown in table 4.20. They are relatively self-

explanatory, but visualisations of some of the angle descriptions are shown in figures 4.1 to 4.5.

The one note that should be made is that the sensor zenith (67) and sensor scan (fg) angles should be consistent.
They are related by equation:

sinfl; sinfg
R+h R

with the quantity definitions shown in figure 4.6

Table 4.20: CRTM Geometry structure component description.

Component Description Units Default value
iFOV The scan line FOV index N/A 0
Longitude Earth longitude for FOV deg. E (0—360) 0.0
Latitude Earth latitude for FOV deg. N (-90—+90) 0.0
Surface Altitude Altitude of the Earth’s surface at the specified metres (m) 0.0
lon/lat location
Sensor_Scan_Angle The sensor scan angle from nadir. See fig.4.1 degrees 0.0
Sensor_Zenith_Angle The sensor zenith angle of the FOV. See fig.4.2 degrees 0.0
Sensor_Azimuth Angle The sensor azimuth angle is the angle sub- deg. from N 999.9
tended by the horizontal projection of a di-
rect line from the satellite to the FOV and
the North-South axis measured clockwise from
North. See fig.4.3
Source_Zenith_Angle The source zenith angle. The source is typi- degrees 100.0
cally the Sun (IR/VIS) or Moon (MW/VIS)
[only solar source valid in current release| See
fig.4.4
Source_Azimuth_Angle The source azimuth angle is the angle sub- deg. from N 0.0
tended by the horizontal projection of a di-
rect line from the source to the FOV and
the North-South axis measured clockwise from
North. See fig.4.5
Flux Zenith Angle The zenith angle used to approximate down- degrees cos~1(3/5)
welling flux transmissivity. If not set, the de-
fault value is that of the diffusivity approx-
imation, such that sec(F) = 5/3. Maximum
allowed value is determined from sec(F') = 9/4
Year The year in 4-digit format N/A 2001
Month The month of year (1-12) N/A 1
Day The day of month (1-28/29/30/31) N/A 1

36

fs

N
|
|
|
|
|
|
|
|
|
|
| \
|
|
|
|
|
|
|
|
|
|
|
|
|

Figure 4.1: Definition of Geometry sensor scan angle component.

Zenith

FOV

Figure 4.2: Definition of Geometry sensor zenith angle component.

37

North Sub-satellite
point

Figure 4.3: Definition of Geometry sensor azimuth angle component.

Zenith

Figure 4.4: Definition of Geometry source zenith angle component.

38

Horizontal projection
North of direct line
from source

Figure 4.5: Definition of Geometry source azimuth angle component.

Figure 4.6: Geometry definitions for equation 4.1.

39

4.6.4 Filling the Options structure with data

Descriptions of the components of the Options structure are shown in table 4.21. If the Options structure is not
even specified in the CRTM function call (since it is itself an optional argument), the default values specified in

table 4.21 are used.

For the allocatable components, the modifier “(1:L)” is an indication of the range of the array indices. Note
that if user-defined surface emissivities are not going to be used there is no need to allocate the internals of the

Options structure.

Table 4.21: CRTM Options structure component description

Component Description Units Default value
Check_Input Logical switch to enable or disable input data checking. N/A .TRUE.
If:
.FALSE.: No input data check.
.TRUE. : Input data is checked.
Use_01d_MWSSEM Logical switch to enable or disable the v2.0.x microwave N/A .FALSE.
sea surface emissivity model. If:
.FALSE.: Use FASTEMS5.
.TRUE. : Use LFMWSSEM/FASTEMI.
Use_Antenna_Correction Logical switch to enable or disable the application of N/A .FALSE.
the antenna correction for the AMSU-A, AMSU-B, and
MHS sensors. Note that for this switch to be effective
in the CRTM call, the FOV field of the input Geometry
structure must be set and the antenna correction coeffi-
cients must be present in the sensor SpcCoeff datafile.
If:
.FALSE.: No correction.
.TRUE. : Apply antenna correction.
Apply NLTE Correction Logical switch to enable or disable the application of the ~N/A .TRUE.
non-LTE radiance correction. Note that for this switch
to be effective in the CRTM call, the non-LTE correc-
tion coefficients must be present in the sensor SpcCoeff
datafile. If:)
.FALSE.: No correction.
.TRUE. : Apply non-LTE correction.
RT_Algorithm_Id Integer switch (using parameterised values) to select the N/A RT_ADA
scattering radiative transfer model. If:
RT_ADA: Use ADA algorithm.
RT_S0I: Use SOI algorithm.
Aircraft_Pressure Real value specifying an aircraft flight level pressure. If: hPa -1.0
<0.0: Satellite simulation.
>0.0: Aircraft simulation.
Use_n_Streams Logical switch to enable or disable the use of a user- N/A .FALSE.

defined number of RT streams for scattering calcula-
tions. If:)

.FAL Use internally calculated
n_Streams.

.TRUE. : Use specified n_Streams.

Continued on Next Page. ..

40

Table 4.21 - Continued

Component

Description

Units

Default value

n_Streams

Include_Scattering

n_Channels
Channel

Use_Emissivity

Emissivity(1:L)

Use Direct_Reflectivity

Direct_Reflectivity(1:L)

SSU

Zeeman

Number of streams to use for scattering calculations if
the Use_n_Streams is set to .TRUE.. Valid values for
n_Streams are 2, 4, 6, 8, and 16.

Logical switch to enable or disable scattering calcula-

tions for clouds and aerosols. If:
.FALSE.: Ounly cloud and/or aerosol ab-

sorption is computed.
.TRUE. : Cloud and/or aerosol absorption
and scattering is computed.

Number of sensor channels, L.
Index into channel-specific components.

Logical switch to enable or disable the use of user-

defined surface emissivity. If:
.FALSE.: Calculate emissivity.

.TRUE. : Use user-defined emissivity.

Allocatable array containing the user-defined surface
emissivity for each sensor channel.

Logical switch to enable or disable the use of user-
defined reflectivity for downwelling source (e.g. solar).
This switch is ignored unless the Use_Emissivity switch

is also set. If: o
.FALSE.: Calculate reflectivity.

.TRUE. : Use user-defined reflectivity.

Allocatable array containing the user-defined direct re-
flectivity for downwelling source for each sensor channel.

Structure component containing optional SSU sensor-
specific input. See section A.10.

Structure component containing optional input for those
sensors where Zeeman-splitting is an issue for high-
peaking channels. See section A.11.

N/A

N/A

N/A
N/A
N/A

N/A

N/A

N/A

N/A

N/A

0

.TRUE.

N/A

.FALSE.

N/A

.FALSE.

N/A

N/A

N/A

Some examples of assigning values to an Options structure are shown below.

Options influencing CRTM behaviour

To check the validity of input data within the CRTM, you can set the Check_Input logical component. Note
that enabling this option could increase execution time.

! Check the input for profile #1...

opt (1) %Check_Input =

.TRUE.

! ...but not for profile #2

opt(2)%Check_Input =

.FALSE.

41

The default microwave sea surface emissivity model implemented in this release is FASTEMS5 (or FASTEM4 if
you initialise the CRTM using the requisite file). To switch back to the previous (i.e. “old”) microwave sea surface
emissivity model, a combination of the low-frequency model and FASTEMI1, you can set the Use_01d_MWSSEM
option,

! Use the old microwave sea surface emissivity model (MWSSEM) for profile #2
opt (2)%Use_01d_MWSSEM = .TRUE.

The default radiative transfer algorithm used for scattering calculation is the Advanced Doubling-Adding (ADA)
algorithm with the Matrix Operator Method (MOM) for calculating layer quantities. To select an alternative
algorithm, you can set the RT_Algorithm_Id option. Currently this is done by specifying a parameterised value
identifying the algorithm. For example, to select the Successive Order of Interation (SOI) algorithm, the option
is set to the parameter RT_SOI,

! Use the SOI algorithm for all scattering RT
opt%RT_Algorithm_Id = RT_SOI

To explicitly select the default RT algorithm, you can set the option to the parameter RT_ADA. The use of a
parameterised integer value rather than a logical switch is to accommodate the implementation of additional
algorithms in future releases.

If you wish to do simulations for aircraft instruments, you can enable this option by setting the aircraft flight
level pressure,

! Specify an aircraft flight level pressure for profile #1
opt(1)%Aircraft_Pressure = 325.0_fp

Of course, doing aircraft sensor simulations requires the various sensor and transmittance models coefficients to
be available for your instrument. To get that process started, contact CRTM Support!!

This release of the CRTM also allows you to turn off cloud and aerosol scattering, performing only the absorption
calculations, via the Include_Scattering option,

! Only perform cloud/aerosol absorption calculations for profile #1...
opt(1)%Include_Scattering = .FALSE.

If you do require the scattering calculations to be done, you can now also specify the number of streams you
wish to be used for the calculations via the Use_n_Streams and n_Streams options,

! ...and do 4-stream scattering calculations for profile #2
opt(2)%Include_Scattering = .TRUE.

opt(2)%Use_n_Streams = .TRUE.

opt(2)%n_Streams =4

Options for user-defined emissivities

You can also specify emissivity spectra for each input profile. For simplicity the example shown below assigns
fixed values for all channels allocated in the Options structure,

1 We’ll need instrument information, e.g. spectral response or instrument line functions, to generate the CRTM transmittance
coefficient data files.

42

mailto:ncep.list.emc.jcsda_crtm.support@noaa.gov

! Specify the use of user-defined emissivities...

opt%Use_Emissivity = .TRUE.

! ...defining different "grey-body" fixed emissivities for each profile
opt(1)%Emissivity = 0.9525_fp

opt(2)%Emissivity = 0.8946_fp

additional profiles...

This setup, however, is problematical when you have multiple sensors (it’s a actually an historical failure of the
specification of the CRTM interface... but let’s not go there.) Recall in section 4.4 that a loop over sensor was
introduced to correctly allocate the channel-dependent arrays. This should be extended to the allocation of the
Options structure itself (see 4.5.3) to allow emissivity spectra to be specified for the different sensors. Extending
the sensor-loop example of section 4.4 with the specification of user-defined emissivities, we could do something

like:

INTEGER :: m, n
Sensor_Loop: DO n = 1, n_sensors

! Get the number of channels to process for current sensor
n_channels = CRTM_ChannelInfo_n_Channels(chinfo(n))

! Allocate the options structure for this sensor to specify emissivity

CALL CRTM_Options_Create(opt , &
n_channels)
! Check they were created successfully
IF (ANY(.NOT. CRTM_Options_Associated(opt))) THEN
handle error...
END IF

! Specify the use of user-defined emissivities in the options structure
opt%Use_Emissivity = .TRUE.
Profile_Loop: DO m = 1, n_profiles
opt(m)%Emissivity(1:n_channels) = ...assign appropriate data...
END DO Profile_Loop

END DO Sensor_Loop

Options for SSU and Zeeman models

The SSU_Input and Zeeman _Input structures are included in the Options input structure.

The components of the SSU_Input data structure are shown in table 4.22.

Table 4.22: CRTM SSU_Input structure component description

Component Description Units Default value

Time Time in decimal year corresponding to SSU N/A 0.0
observation.

Cell Pressure The SSU COs cell pressures. hPa 0.0

43

The SSU_Input data structure itself is declared as PRIVATE (see figure A.10). As such, the only way to set
values in, or get values from, the structure is via the SSU_Input_SetValue or SSU_Input_GetValue subroutines
respectively.

For example, to set the SSU instrument mission time, one would call the SSU_Input_SetValue subroutine like
S0,

! Set the SSU input data in the options substructure
CALL SSU_Input_SetValue(opt%SSU_Input , & | Object
Time=mission_time) ! Optional input

where the local variable mission_time contains the required time.

The contents of the Zeeman Input data structure are shown in table 4.22. similarly to the SSU_Input data struc-
ture, the Zeeman_Input data structure is also declared as PRIVATE and the corresponding Zeeman Input_SetValue
or Zeeman_Input_GetValue subroutines must be used to assign or retrieve values from the structure.

Table 4.23: CRTM Zeeman_Input structure component description

Component Description Units Default value

Be Earth magnetic field strength. Gauss 0.3

Cos_ThetaB Cosine of the angle between the Earth mag- N/A 0.0
netic field and wave propagation direction.

Cos_PhiB Cosine of the azimuth angle of the B, vec- N/A 0.0

tor in the (v, h, k) coordinates system, where
v, h and k comprise a right-hand orthogonal
system, similar to the (x,y, z) Cartesian coor-
dinates. The h vector is normal to the plane
containing the k and z vectors, where k points
to the wave propagation direction and z points
to the zenith. h = (z x k)/|z x k|. The az-
imuth angle is the angle on the (v,h) plane
from the positive v axis to the projected line
of the B, vector on this plane, positive coun-
terclockwise.
Doppler_Shift Doppler frequency shift caused by Earth- KHz 0.0

rotation (positive towards sensor). A zero
value means no frequency shift.

Setting the Earth’s magnetic field strength and 6p cosine in the Zeeman Input structure is done via the
Zeeman_Input_SetValue subroutine like so,

! Set the Zeeman input data in the options substructure

CALL Zeeman_Input_SetValue(optlZeeman_Input , & ! Object
Field_Strength=Be , & ! Optional input
Cos_ThetaB =angle) ! Optional input

where, again, Be and angle are the local variables for the necessary data.

4.6.5 Initialising the K-matrix input and outputs

For the K-matrix structures, you should zero the K-matrix outputs, atm K and sfc K,

44

! Zero the K-matrix OUTPUT structures
CALL CRTM_Atmosphere_Zero(atm_K)
CALL CRTM_Surface_Zero(sfc_K)

and initialise the K-matrix input, rts_X, to provide you with the derivatives you want. For example, if you want
the atm K, sfc_K outputs to contain brightness temperature derivatives 97z /0, you should initialise rts_K like
S0,

! Initialise the K-Matrix INPUT to provide dTb/dx derivatives
rts_K\Radiance = ZERO
rts_KJBrightness_Temperature = ONE

Alternatively, if you want radiance derivatives returned in atm K and sfc_K, the rts X structure should be
initialised like so,

! Initialise the K-Matrix INPUT to provide dR/dx derivatives
rts_K)Radiance = ONE
rts_KJBrightness_Temperature = ZERO

Note that, for visible channels, one should always set the K-Matrix input to provide dR/9x derivatives since the
generated brightness temperatures are for solar temperatures.

4.7 Call the required CRTM function

At this point, much of the preparatory heavy lifting has been done. The CRTM function calls themselves are
quite simple.

4.7.1 The CRTM Forward model

The calling syntax for the CRTM forward model is,

err_stat = CRTM_Forward(atm , & ! Input
sfc , & ! Input
geo , & ! Input
chInfo , & ! Input
rts , & ! Output
Options=opt) ! Optional input

IF (err_stat /= SUCCESS) THEN
handle error...
END IF

Let’s also specify the forward model call in the context of the sensor-loop example of section 4.4. It might look
something like,

INTEGER :: m, n
Sensor_Loop: DO n = 1, n_sensors

! Get the number of channels to process for current sensor

45

n_channels = CRTM_ChannelInfo_n_Channels(chinfo(n))

! Allocate channel-dependent arrays
ALLOCATE(rts(n_channels, n_profiles), &
STAT = alloc_stat)

IF (alloc_stat /= 0) THEN
handle error...
END IF

! Call the forward model, processing ALL profiles at once.

err_stat = CRTM_Forward(atm , & ! Input
sfc , & ! Input
geo , & ! Input
chinfo(n:n), & ! Input
rts , & ! Output
]

Options=opt)
IF (err_stat /= SUCCESS) THEN
handle error...
END IF

Optional input

! Deallocate channel-dependent arrays
DEALLOCATE(rts, STAT = alloc_stat)
IF (alloc_stat /= 0) THEN
handle error...
END IF
END DO Sensor_Loop

where we are procesing a single sensor at a time. Note the specification of the ChannelInfo argument,
chInfo(n:n). The use of the (n:n) modifier is required to ensure that a single element array is passed in
to the forward model. If one simply wrote chInfo(n), this specifies a scalar and the calling code would not

compile'?.

4.7.2 The CRTM K-Matrix model

The calling syntax for the CRTM K-matrix model is,

err_stat = CRTM_K_Matrix(atm , & ! Forward input
sfc , & ! Forward input
rts_K , & ! K-matrix input
geo , & ! Input
chinfo , & ! Input
atm_K , & ! K-matrix output
sfc_K , & ! K-matrix output
rts , & ! Forward output
Options=opt) ! Optional input

IF (err_stat /= SUCCESS) THEN
handle error...
END IF

Note that the K-matrix model also returns the forward model radiances.

121f you think this quirk is annoying and should be corrected, please email CRTM Support with your
ncep.list.emc.jcsda_crtm.support@noaa.gov

46

vote!

mailto:ncep.list.emc.jcsda_crtm.support@noaa.gov

Similarly to the forward model example, let’s recast the call within a sensor-loop,
INTEGER :: m, n
Sensor_Loop: DO n = 1, n_sensors

! Get the number of channels to process for current sensor
n_channels = CRTM_ChannelInfo_n_Channels(chinfo(n))

! Allocate channel-dependent arrays

ALLOCATE(rts(n_channels, n_profiles) ,
atm_K(n_channels, n_profiles),
sfc_K(n_channels, n_profiles),
rts_K(n_channels, n_profiles),
STAT = alloc_stat)

IF (alloc_stat /= 0) THEN

handle error...
END IF

! Call the forward model, processing ALL profiles at once.

err_stat = CRTM_K_Matrix(atm , & ! Forward input
sfc , & ! Forward input
rts_K , & ! K-matrix input
geo , & ! Input
chinfo(n:n), & ! Input
atm_K , & ! K-matrix output
sfc_K , & ! K-matrix output
rts , & ! Forward output
Options=opt) ! Optional input

IF (err_stat /= SUCCESS) THEN
handle error...
END IF

! Deallocate channel-dependent arrays
DEALLOCATE(rts, atm_K, sfc_K, rts_K, &
STAT = alloc_stat)
IF (alloc_stat /= 0) THEN
handle error...
END IF
END DO Sensor_Loop

4.7.3 The CRTM Tangent-linear and Adjoint models

The tangent-linear and adjoint models have similar call structures and will not be shown here. Refer to their
interface descriptions for details.

4.7.4 The CRTM Aerosol Optical Depth (AOD) functions

There is a separate module containing forward, tangent-linear, adjoint and K-matrix function to just compute
aerosol optical depths. The calling syntax for these functions are similar to the main function, but with fewer
argument.

The calling syntax for the CRTM forward AOD model is,

47

err_stat = CRTM_AOD(atm , & ! Input
chInfo , & ! Input
rts , & ! Output
Options=opt) ! Optional input

IF (err_stat /= SUCCESS) THEN
handle error...
END IF

A important note: the computed aerosol optical depth is stored in the Layer _Optical Depth component of the
RTSolution output so you must allocate the internals of the RTSolution structure. Using the call in the context
of the sensor-loop example of section 4.4, we would do,

INTEGER :: m, n
Sensor_Loop: DO n = 1, n_sensors

! Get the number of channels to process for current sensor
n_channels = CRTM_ChannelInfo_n_Channels(chinfo(n))

! Allocate channel-dependent arrays
ALLOCATE(rts(n_channels, n_profiles), &
STAT = alloc_stat)

IF (alloc_stat /= 0) THEN
handle error...
END IF

! Allocate RTSolution structure to store optical depth output
CALL CRTM_RTSolution_Create(rts, n_layers)
IF (.NOT. ALL(CRTM_RTSolution_Associated(rts))) THEN
handle error...
END IF

! Call the forward AOD model, processing ALL profiles at once.

err_stat = CRTM_AOD(atm , & ! Input
chinfo(n:n), & ! Input
rts , & ! Output

!

Options=opt)
IF (err_stat /= SUCCESS) THEN
handle error...
END IF

Optional input

! Deallocate channel-dependent arrays
DEALLOCATE(rts, STAT = alloc_stat)
IF (alloc_stat /= O) THEN
handle error...
END IF
END DO Sensor_Loop

The aerosol optical depth tangent-linear, adjoint, and K-matrix functions have call structures similar to the main
function and will not be shown here. Refer to their interface descriptions for details.

48

4.8 Inspect the CRTM output structures

Regardless of whether you have called the forward or K-matrix model, you will want to have a look at the results
in the RTSolution structure. The components of this structure are shown in table 4.24. The modifier “(1:K)”
indicates the range of the allocatable components.

Table 4.24: CRTM RTSolution structure component description. TOnly defined for forward ra-
diative transfer computations.

Component Description Units Default value
n_Layers Number of atmospheric profile N/A 0

layers, K
Sensor_Id The sensor id string N/A empty string
WMO_Satellite_Id The WMO satellite Id N/A INVALID WMO_SATELLITE_ID
WMO_Sensor_Id The WMO sensor Id N/A INVALID_WMO_SENSOR_ID
Sensor_Channel The channel number N/A 0
RT_Algorithm Name Character string containing the N/A empty string

name of the radiative transfer al-
gorithm used.

sopf The scattering optical depth N/A 0.0

Surface Emissivity' The surface emissivity (com- N/A 0.0
puted or user-defined)

Up_Radiance! The atmospheric portion of the mW/(m?.sr.cm™) 0.0
upwelling radiance

Down Radiance’ The atmospheric portion of the mW/(m?.sr.cm™) 0.0
downwelling radiance

Down_Solar Radiance! The downwelling direct solar ra- mW/(m?.sr.cm™) 0.0
diance

Surface Planck Radiance! The surface radiance mW/(m?.sr.cm™) 0.0

Upwelling Radiance(1:K)' The upwelling radiance profile, mW/(m?.sr.cm™) N/A

including the reflected down-
welling and surface contribu-

tions.
Layer_Optical Depth(1:K)t The layer optical depth profile N/A N/A
Radiance The sensor radiance mW/(m?.sr.cm™) 0.0
Brightness_Temperature The sensor brightness tempera- Kelvin 0.0
ture

Although most people are interested in using the radiance or brightness temperature component, you can dump
the entire contents of the RTSolution structure directly to screen using the CRTM_RTSolution Inspect procedure,

CALL CRTM_RTSolution_Inspect(rts_K)

4.9 Destroy the CRTM and cleanup

The last step is to cleanup. This involves calling the CRTM destruction function

err_stat = CRTM_Destroy(chinfo)

IF (err_stat /= SUCCESS) THEN
handle error...

END IF

49

to deallocate all the shared coefficient data that was read during the intialisation step.

Note that one can also call the individual CRTM structure subroutines as well to deallocate the internals of the
various structure arrays that were created in section 4.5. The cleanup mirrors that of the create step:

CALL CRTM_Options_Destroy(opt)
CALL CRTM_RTSolution_Destroy(rts)
CALL CRTM_Atmosphere_Destroy(atm)

If you also have K-matrix structures, you also call the destruction subroutines for htem too:

CALL CRTM_RTSolution_Destroy(rts_K)
CALL CRTM_Atmosphere_Destroy(atm_K)

However, it should be pointed out that deallocating the structure arrays also deallocates the internals of each
element of a structure. To use the Atmosphere array, atm, as an example; doing the following,

DEALLOCATE(atm, STAT = alloc_stat)
IF (alloc_stat /= 0) THEN

handle error...
END IF

is equivalent to,

! Deallocate the array element internals
CALL CRTM_Atmosphere_Destroy(atm)
! Deallocate the array itself
DEALLOCATE(atm, STAT = alloc_stat)
IF (alloc_stat /= 0) THEN

handle error...
END IF

since, in Fortran95+TR15581 and Fortran2003 the array deallocation will also deallocate any structure compo-
nents that have an ALLOCATABLE attribute.

50

Interface Descriptions

5.1 Initialisation functions

5.1.1 CRTM Init interface

NAME:
CRTM_Init

PURPOSE:

Function to initialise the CRTM.

CALLING SEQUENCE:

Error_Status

INPUTS:

CRTM_Init(Semnsor_ID , &

ChannellInfo, &
CloudCoeff_File
AerosolCoeff_File
Load_CloudCoeff
Load_AerosolCoeff
IRwaterCoeff_File
IRlandCoeff_File
IRsnowCoeff_File
IRiceCoeff_File
VISwaterCoeff_File
VISlandCoeff_File
VISsnowCoeff_File
VISiceCoeff_File
MWwaterCoeff_File
File_Path

Quiet

Process_ID
Output_Process_ID

CloudCoeff_File

= AerosolCoeff_File

Load_CloudCoeff
Load_AerosolCoeff

= IRwaterCoeff_File

IRlandCoeff_File
IRsnowCoeff_File
IRiceCoeff_File

B

VISwaterCoeff_File,

VISlandCoeff_File
VISsnowCoeff_File

= VISiceCoeff_File

MWwaterCoeff_File
File_Path
Quiet

= Process_ID

Output_Process_ID

B

’

B

B

R R S S S S S S S S S S SR S A

Sensor_ID: List of the sensor IDs (e.g. hirs3_nl17, amsua_ni8,
ssmis_f16, etc) with which the CRTM is to be
initialised. These sensor ids are used to construct
the sensor specific SpcCoeff and TauCoeff filenames

containing the necessary coefficient data, i.e.

51

<Sensor_ID>.SpcCoeff.bin
and

<Sensor_ID>.TauCoeff.bin
for each sensor Id in the list.
UNITS: N/A
TYPE: CHARACTER (%)
DIMENSION: Rank-1 (n_Sensors)
ATTRIBUTES: INTENT(IN), OPTIONAL

OUTPUTS:

ChannelInfo: ChannelInfo structure array populated based on
the contents of the coefficient files and the
user inputs.

UNITS: N/A

TYPE: CRTM_ChannelInfo_type

DIMENSION: Same as input Sensor_Id argument
ATTRIBUTES: INTENT(OUT)

OPTIONAL INPUTS:
CloudCoeff_File: Name of the data file containing the cloud optical

properties data for scattering calculations.
Available datafiles:
- CloudCoeff.bin [DEFAULT]
UNITS: N/A
TYPE: CHARACTER (%)
DIMENSION: Scalar
ATTRIBUTES: INTENT(IN), OPTIONAL

AerosolCoeff_File: Name of the data file containing the aerosol optical
properties data for scattering calculations.
Available datafiles:
- AerosolCoeff.bin [DEFAULT]
UNITS: N/A
TYPE: CHARACTER (%)
DIMENSION: Scalar
ATTRIBUTES: INTENT(IN), OPTIONAL

Load_CloudCoeff: Set this logical argument for not loading the CloudCoeff data
to save memory space under the clear conditions
If == .FALSE., the CloudCoeff data will not be loaded;
== .TRUE., the CloudCoeff data will be loaded.
If not specified, default is .TRUE. (will be loaded)
UNITS: N/A
TYPE: LOGICAL
DIMENSION: Scalar
ATTRIBUTES: INTENT(IN), OPTIONAL

Load_AerosolCoeff: Set this logical argument for not loading the AerosolCoeff data
to save memory space under the clear conditions
If == .FALSE., the AerosolCoeff data will not be loaded;
== .TRUE., the AerosolCoeff data will be loaded.
If not specified, default is .TRUE. (will be loaded)
UNITS: N/A
TYPE: LOGICAL

52

MWwaterCoeff_File:

IRwaterCoeff_File:

IRlandCoeff_File:

IRsnowCoeff_File:

IRiceCoeff_File:

DIMENSION: Scalar
ATTRIBUTES: INTENT(IN), OPTIONAL

Name of the data file containing the coefficient
data for the microwave water emissivity model.
Available datafiles:

- FASTEM5.MWwater.EmisCoeff.bin [DEFAULT]

- FASTEM4.MWwater.EmisCoeff.bin

UNITS: N/A

TYPE: CHARACTER (%)

DIMENSION: Scalar

ATTRIBUTES: INTENT(IN), OPTIONAL

Name of the data file containing the coefficient
data for the infrared water emissivity model.
Available datafiles:

- Nalli.IRwater.EmisCoeff.bin [DEFAULT]

- WuSmith.IRwater.EmisCoeff.bin

If not specified the Nalli datafile is read.
UNITS: N/A

TYPE: CHARACTER (%)

DIMENSION: Scalar

ATTRIBUTES: INTENT(IN), OPTIONAL

Name of the data file containing the coefficient
data for the infrared land emissivity model.
Available datafiles:

- NPOESS.IRland.EmisCoeff.bin [DEFAULT]

- IGBP.IRland.EmisCoeff.bin

- USGS.IRland.EmisCoeff.bin

UNITS: N/A

TYPE: CHARACTER (%)

DIMENSION: Scalar

ATTRIBUTES: INTENT(IN), OPTIONAL

Name of the data file containing the coefficient
data for the infrared snow emissivity model.
Available datafiles:

- NPOESS.IRsnow.EmisCoeff.bin [DEFAULT]

- IGBP.IRsnow.EmisCoeff.bin

- USGS.IRsnow.EmisCoeff.bin

UNITS: N/A

TYPE: CHARACTER (*)

DIMENSION: Scalar

ATTRIBUTES: INTENT(IN), OPTIONAL

Name of the data file containing the coefficient
data for the infrared ice emissivity model.
Available datafiles:

- NPOESS.IRice.EmisCoeff.bin [DEFAULT]

- IGBP.IRice.EmisCoeff.bin

- USGS.IRice.EmisCoeff.bin

UNITS: N/A

TYPE: CHARACTER (%)

53

VISwaterCoeff_File:

VISlandCoeff_File:

VISsnowCoeff_File:

VISiceCoeff_File:

File_Path:

DIMENSION: Scalar
ATTRIBUTES: INTENT(IN), OPTIONAL

Name of the data file containing the coefficient
data for the visible water emissivity model.
Available datafiles:

- NPOESS.VISwater.EmisCoeff.bin [DEFAULT]

- IGBP.VISwater.EmisCoeff.bin

- USGS.VISwater.EmisCoeff.bin

UNITS: N/A

TYPE: CHARACTER (%)

DIMENSION: Scalar

ATTRIBUTES: INTENT(IN), OPTIONAL

Name of the data file containing the coefficient
data for the visible land emissivity model.
Available datafiles:

- NPOESS.VISland.EmisCoeff.bin [DEFAULT]

- IGBP.VISland.EmisCoeff.bin

- USGS.VISland.EmisCoeff.bin

UNITS: N/A

TYPE: CHARACTER (%)

DIMENSION: Scalar

ATTRIBUTES: INTENT(IN), OPTIONAL

Name of the data file containing the coefficient
data for the visible snow emissivity model.
Available datafiles:

- NPOESS.VISsnow.EmisCoeff.bin [DEFAULT]

- IGBP.VISsnow.EmisCoeff.bin

- USGS.VISsnow.EmisCoeff.bin

UNITS: N/A

TYPE: CHARACTER (*)

DIMENSION: Scalar

ATTRIBUTES: INTENT(IN), OPTIONAL

Name of the data file containing the coefficient
data for the visible ice emissivity model.
Available datafiles:

- NPOESS.VISice.EmisCoeff.bin [DEFAULT]

- IGBP.VISice.EmisCoeff.bin

- USGS.VISice.EmisCoeff.bin

UNITS: N/A

TYPE: CHARACTER (%)

DIMENSION: Scalar

ATTRIBUTES: INTENT(IN), OPTIONAL

Character string specifying a file path for the
input data files. If not specified, the current
directory is the default.

UNITS: N/A

TYPE: CHARACTER (%)

DIMENSION: Scalar

ATTRIBUTES: INTENT(IN), OPTIONAL

54

Quiet: Set this logical argument to suppress INFORMATION
messages being printed to stdout
If == .FALSE., INFORMATION messages are OUTPUT [DEFAULT].
== .TRUE., INFORMATION messages are SUPPRESSED.
If not specified, default is .FALSE.
UNITS: N/A
TYPE: LOGICAL
DIMENSION: Scalar
ATTRIBUTES: INTENT(IN), OPTIONAL

Process_ID: Set this argument to the MPI process ID that this
function call is running under. This value is used
solely for controlling INFORMATION message output.

If MPI is not being used, ignore this argument.

This argument is ignored if the Quiet argument is set.
UNITS: N/A

TYPE: INTEGER

DIMENSION: Scalar

ATTRIBUTES: INTENT(IN), OPTIONAL

Output_Process_ID: Set this argument to the MPI process ID in which
all INFORMATION messages are to be output. If
the passed Process_ID value agrees with this value
the INFORMATION messages are output.
This argument is ignored if the Quiet argument

is set.
UNITS: N/A
TYPE: INTEGER

DIMENSION: Scalar
ATTRIBUTES: INTENT(IN), OPTIONAL

FUNCTION RESULT:
Error_Status: The return value is an integer defining the error
status. The error codes are defined in the
Message_Handler module.
If == SUCCESS the CRTM initialisation was successful
== FATILURE an unrecoverable error occurred.
UNITS: N/A
TYPE: INTEGER
DIMENSION: Scalar

SIDE EFFECTS:

A1l public data arrays accessed by this module and its dependencies
are overwritten.

95

5.2 Main functions

5.2.1 CRTM Forward interface

NAME:
CRTM_Forward

PURPOSE:
Function that calculates top-of-atmosphere (TOA) radiances
and brightness temperatures for an input atmospheric profile or
profile set and user specified satellites/channels.

CALLING SEQUENCE:

Error_Status = CRTM_Forward(Atmosphere , &
Surface , &
Geometry , &
ChannelInfo , &
RTSolution , &
Options = Options)
INPUTS:

Atmosphere: Structure containing the Atmosphere data.
UNITS: N/A
TYPE: CRTM_Atmosphere_type
DIMENSION: Rank-1 (n_Profiles)

ATTRIBUTES: INTENT(IN)
Surface: Structure containing the Surface data.
UNITS: N/A
TYPE: CRTM_Surface_type
DIMENSION: Same as input Atmosphere structure
ATTRIBUTES: INTENT(IN)

Geometry: Structure containing the view geometry

information.

UNITS: N/A

TYPE: CRTM_Geometry_type

DIMENSION: Same as input Atmosphere structure
ATTRIBUTES: INTENT(IN)

ChannelInfo: Structure returned from the CRTM_Init() function
that contains the satellite/sensor channel index
information.

UNITS: N/A
TYPE: CRTM_ChannelInfo_type
DIMENSION: Rank-1 (n_Sensors)
ATTRIBUTES: INTENT(IN)

OUTPUTS:

RTSolution: Structure containing the soluition to the RT equation
for the given inputs.
UNITS: N/A

56

OPTIONAL INPUTS:
Options:

FUNCTION RESULT:

Error_Status:

COMMENTS :

TYPE: CRTM_RTSolution_type
DIMENSION: Rank-2 (n_Channels x n_Profiles)
ATTRIBUTES: INTENT(IN OUT)

Options structure containing the optional arguments
for the CRTM.

UNITS: N/A

TYPE: CRTM_Options_type

DIMENSION: Same as input Atmosphere structure
ATTRIBUTES: INTENT(IN), OPTIONAL

The return value is an integer defining the error status.
The error codes are defined in the Message_Handler module.

If == SUCCESS the computation was sucessful
== FATLURE an unrecoverable error occurred

UNITS: N/A

TYPE: INTEGER

DIMENSION: Scalar

- The Options optional input structure argument contains
spectral information (e.g. emissivity) that must have the same
spectral dimensionality (the "L" dimension) as the output
RTSolution structure.

o7

5.2.2 CRTM_Tangent_Linear interface

NAME:
CRTM_Tangent_Linear

PURPOSE:
Function that calculates tangent-linear top-of-atmosphere (TOA)
radiances and brightness temperatures for an input atmospheric
profile or profile set and user specified satellites/channels.

CALLING SEQUENCE:

Error_Status = CRTM_Tangent_Linear(Atmosphere , &
Surface , &
Atmosphere_TL , &
Surface_TL , &
Geometry , &
ChannelInfo , &
RTSolution , &
RTSolution_TL , &
Options = Options)
INPUTS:
Atmosphere: Structure containing the Atmosphere data.
UNITS: N/A
TYPE: CRTM_Atmosphere_type
DIMENSION: Rank-1 (n_Profiles)
ATTRIBUTES: INTENT(IN)
Surface: Structure containing the Surface data.
UNITS: N/A
TYPE: CRTM_Surface_type

DIMENSION: Same as input Atmosphere structure
ATTRIBUTES: INTENT(IN)

Atmosphere_TL: Structure containing the tangent-linear Atmosphere data.
UNITS: N/A
TYPE: CRTM_Atmosphere_type
DIMENSION: Same as input Atmosphere structure
ATTRIBUTES: INTENT(IN)

Surface_TL: Structure containing the tangent-linear Surface data.
UNITS: N/A
TYPE: CRTM_Surface_type

DIMENSION: Same as input Atmosphere structure
ATTRIBUTES: INTENT(IN)

Geometry: Structure containing the view geometry
information.
UNITS: N/A
TYPE: CRTM_Geometry_type

DIMENSION: Same as input Atmosphere structure
ATTRIBUTES: INTENT(IN)

o8

ChannelInfo: Structure returned from the CRTM_Init() function
that contains the satellite/sensor channel index

information.
UNITS: N/A
TYPE: CRTM_ChannelInfo_type

DIMENSION: Rank-1 (n_Sensors)
ATTRIBUTES: INTENT(IN)

OUTPUTS:
RTSolution: Structure containing the solution to the RT equation
for the given inputs.
UNITS: N/A
TYPE: CRTM_RTSolution_type

DIMENSION: Rank-2 (n_Channels x n_Profiles)
ATTRIBUTES: INTENT(IN OUT)

RTSolution_TL: Structure containing the solution to the tangent-
linear RT equation for the given inputs.
UNITS: N/A
TYPE: CRTM_RTSolution_type
DIMENSION: Rank-2 (n_Channels x n_Profiles)
ATTRIBUTES: INTENT(IN OUT)

OPTIONAL INPUTS:
Options: Options structure containing the optional forward model
arguments for the CRTM.
UNITS: N/A
TYPE: CRTM_Options_type
DIMENSION: Same as input Atmosphere structure
ATTRIBUTES: INTENT(IN), OPTIONAL

FUNCTION RESULT:

Error_Status: The return value is an integer defining the error status.
The error codes are defined in the Message_Handler module.
If == SUCCESS the computation was sucessful

== FAILURE an unrecoverable error occurred

UNITS: N/A
TYPE: INTEGER
DIMENSION: Scalar

COMMENTS:

- The Options optional input structure arguments contain
spectral information (e.g. emissivity) that must have the same
spectral dimensionality (the "L" dimension) as the output
RTSolution structures.

99

5.2.3 CRTM_Adjoint interface

NAME:
CRTM_Adjoint

PURPOSE:

Function that calculates the adjoint of top-of-atmosphere (TOA)
radiances and brightness temperatures for an input atmospheric
profile or profile set and user specified satellites/channels.

CALLING SEQUENCE:
Error_Status =

INPUTS:
Atmosphere:

Surface:

RTSolution_AD:

Geometry:

ChannelInfo:

CRTM_Adjoint (Atmosphere , &
Surface , &
RTSolution_AD , &
Geometry , &
ChannelInfo , &
Atmosphere_AD , &
Surface_AD , &
RTSolution , &
Options = Options)

Structure containing the Atmosphere data.
UNITS: N/A

TYPE: CRTM_Atmosphere_type
DIMENSION: Rank-1 (n_Profiles)
ATTRIBUTES: INTENT(IN)

Structure containing the Surface data.

UNITS: N/A

TYPE: CRTM_Surface_type

DIMENSION: Same as input Atmosphere structure
ATTRIBUTES: INTENT(IN)

Structure containing the RT solution adjoint inputs.
**NOTE: On EXIT from this function, the contents of
this structure may be modified (e.g. set to

zero.)
UNITS: N/A
TYPE: CRTM_RTSolution_type

DIMENSION: Rank-2 (n_Channels x n_Profiles)
ATTRIBUTES: INTENT(IN OUT)

Structure containing the view geometry

information.
UNITS: N/A
TYPE: CRTM_Geometry_type

DIMENSION: Same as input Atmosphere argument
ATTRIBUTES: INTENT(IN)

Structure returned from the CRTM_Init() function

that contains the satellite/sensor channel index
information.

60

UNITS: N/A

TYPE: CRTM_ChannelInfo_type
DIMENSION: Rank-1 (n_Sensors)
ATTRIBUTES: INTENT(IN)

OPTIONAL INPUTS:
Options: Options structure containing the optional forward model
arguments for the CRTM.
UNITS: N/A
TYPE: CRTM_Options_type
DIMENSION: Same as input Atmosphere structure
ATTRIBUTES: INTENT(IN), OPTIONAL

OUTPUTS:
Atmosphere_AD: Structure containing the adjoint Atmosphere data.

**NOTE: On ENTRY to this function, the contents of
this structure should be defined (e.g.
initialized to some value based on the
position of this function in the call chain.)

UNITS: N/A

TYPE: CRTM_Atmosphere_type

DIMENSION: Same as input Atmosphere argument

ATTRIBUTES: INTENT(IN OUT)

Surface_AD: Structure containing the tangent-linear Surface data.

**xNOTE: On ENTRY to this function, the contents of
this structure should be defined (e.g.
initialized to some value based on the
position of this function in the call chain.)

UNITS: N/A

TYPE: CRTM_Surface_type

DIMENSION: Same as input Atmosphere argument

ATTRIBUTES: INTENT(IN OUT)

RTSolution: Structure containing the solution to the RT equation
for the given inputs.
UNITS: N/A
TYPE: CRTM_RTSolution_type
DIMENSION: Same as input RTSolution_AD argument
ATTRIBUTES: INTENT(IN OUT)

FUNCTION RESULT:

Error_Status: The return value is an integer defining the error status.
The error codes are defined in the Message_Handler module.
If == SUCCESS the computation was sucessful

== FAILURE an unrecoverable error occurred

UNITS: N/A
TYPE: INTEGER
DIMENSION: Scalar

SIDE EFFECTS:
Note that the input adjoint arguments are modified upon exit, and
the output adjoint arguments must be defined upon entry. This is
a consequence of the adjoint formulation where, effectively, the

61

chain rule is being used and this function could reside anywhere
in the chain of derivative terms.

COMMENTS:
- The Options optional structure arguments contain
spectral information (e.g. emissivity) that must have the same

spectral dimensionality (the "L" dimension) as the RTSolution
structures.

62

5.2.4 CRTM_K_Matrix interface

NAME:
CRTM_K_Matrix

PURPOSE:
Function that calculates the K-matrix of top-of-atmosphere (TOA)
radiances and brightness temperatures for an input atmospheric
profile or profile set and user specified satellites/channels.

CALLING SEQUENCE:

Error_Status = CRTM_K_Matrix(Atmosphere , &
Surface , &
RTSolution_K , &
Geometry , &
ChannelInfo , &
Atmosphere_K , &
Surface_K , &
RTSolution , &
Options = Options)
INPUTS:
Atmosphere: Structure containing the Atmosphere data.
UNITS: N/A
TYPE: CRTM_Atmosphere_type
DIMENSION: Rank-1 (n_Profiles)
ATTRIBUTES: INTENT(IN)
Surface: Structure containing the Surface data.
UNITS: N/A
TYPE: CRTM_Surface_type
DIMENSION: Same as input Atmosphere argument.
ATTRIBUTES: INTENT(IN)
RTSolution_K: Structure containing the RT solution K-matrix inputs.
**NOTE: On EXIT from this function, the contents of
this structure may be modified (e.g. set to
zero.)
UNITS: N/A
TYPE: CRTM_RTSolution_type
DIMENSION: Rank-2 (n_Channels x n_Profiles)
ATTRIBUTES: INTENT(IN OUT)
Geometry: Structure containing the view geometry
information.
UNITS: N/A
TYPE: CRTM_Geometry_type
DIMENSION: Same as input Atmosphere argument
ATTRIBUTES: INTENT(IN)
Channellnfo: Structure returned from the CRTM_Init() function
that contains the satellite/sesnor channel index
information.

63

UNITS: N/A

TYPE: CRTM_ChannelInfo_type
DIMENSION: Rank-1 (n_Sensors)
ATTRIBUTES: INTENT(IN)

OPTIONAL INPUTS:
Options: Options structure containing the optional forward model
arguments for the CRTM.
UNITS: N/A
TYPE: CRTM_Options_type
DIMENSION: Same as input Atmosphere structure
ATTRIBUTES: INTENT(IN), OPTIONAL

OUTPUTS:
Atmosphere_K: Structure containing the K-matrix Atmosphere data.
**NOTE: On ENTRY to this function, the contents of
this structure should be defined (e.g.
initialized to some value based on the
position of this function in the call chain.)
UNITS: N/A
TYPE: CRTM_Atmosphere_type
DIMENSION: Same as input RTSolution_K argument
ATTRIBUTES: INTENT(IN OUT)
Surface_K: Structure containing the tangent-linear Surface data.
**xNOTE: On ENTRY to this function, the contents of
this structure should be defined (e.g.
initialized to some value based on the
position of this function in the call chain.)
UNITS: N/A
TYPE: CRTM_Surface_type
DIMENSION: Same as input RTSolution_K argument
ATTRIBUTES: INTENT(IN OUT)
RTSolution: Structure containing the solution to the RT equation
for the given inputs.
UNITS: N/A
TYPE: CRTM_RTSolution_type

DIMENSION: Same as input RTSolution_K argument
ATTRIBUTES: INTENT(IN OUT)

FUNCTION RESULT:

Error_Status: The return value is an integer defining the error status.
The error codes are defined in the Message_Handler module.
If == SUCCESS the computation was sucessful

== FAILURE an unrecoverable error occurred

UNITS: N/A
TYPE: INTEGER
DIMENSION: Scalar

SIDE EFFECTS:
Note that the input K-matrix arguments are modified upon exit, and
the output K-matrix arguments must be defined upon entry. This is
a consequence of the K-matrix formulation where, effectively, the

64

chain rule is being used and this funtion could reside anywhere
in the chain of derivative terms.

COMMENTS :
- The Options optional structure arguments contain
spectral information (e.g. emissivity) that must have the same
spectral dimensionality (the "L" dimension) as the RTSolution
structures.

65

5.3 Aerosol optical

depth functions

5.3.1 CRTM_AOD interface

NAME:
CRTM_AQD

PURPOSE:

Function that calculates layer total optical depth profile at nadir.

CALLING SEQUENCE:

Error_Status = CRTM_AOD(Atmosphere ,

INPUTS:
Atmosphere:

ChannelInfo:

OUTPUTS:
RTSolution:

OPTIONAL INPUTS:
Options:

FUNCTION RESULT:
Error_Status:

RTSolution s

&
ChannellInfo , &
&
Options = Options)

Structure containing the Atmosphere data.
UNITS: N/A

TYPE: CRTM_Atmosphere_type
DIMENSION: Rank-1 (n_Profiles)
ATTRIBUTES: INTENT(IN)

Structure returned from the CRTM_Init() function
that contains the satellite/sensor channel index
information.

UNITS: N/A

TYPE: CRTM_ChannelInfo_type

DIMENSION: Rank-1 (n_Sensors)

ATTRIBUTES: INTENT(IN)

Structure containing the layer aerosol optical
profile for the given inputs.

UNITS: N/A

TYPE: CRTM_RTSolution_type

DIMENSION: Rank-2 (n_Channels x n_Profiles)
ATTRIBUTES: INTENT(IN OUT)

Options structure containing the optional arguments
for the CRTM.

UNITS: N/A

TYPE: CRTM_Options_type

DIMENSION: Same as input Atmosphere structure
ATTRIBUTES: INTENT(IN), OPTIONAL

The return value is an integer defining the error status.
The error codes are defined in the Message_Handler module.
If == SUCCESS the computation was sucessful

== FAILURE an unrecoverable error occurred

66

UNITS: N/A
TYPE: INTEGER
DIMENSION: Scalar

COMMENTS:
- Many of the components of the Options optional input structure
are not used in this function. Consult the CRTM User Guide for
which Options components are usable for AOD calculatiomns.

67

5.3.2 CRTM_AOD_TL interface

NAME:
CRTM_AOD_TL

PURPOSE:
Function that calculates tangent-linear layer total optical depth.

CALLING SEQUENCE:
Error_Status = CRTM_AOD_TL(Atmosphere ,
Atmosphere_TL)
ChannellInfo s
RTSolution s
RTSolution_TL)
Options = Options

e

INPUTS:
Atmosphere: Structure containing the Atmosphere data.
UNITS: N/A
TYPE: CRTM_Atmosphere_type
DIMENSION: Rank-1 (n_Profiles)
ATTRIBUTES: INTENT(IN)

Atmosphere_TL: Structure containing the tangent-linear Atmosphere data.
UNITS: N/A
TYPE: CRTM_Atmosphere_type
DIMENSION: Same as input Atmosphere structure
ATTRIBUTES: INTENT(IN)

ChannelInfo: Structure returned from the CRTM_Init() function
that contains the satellite/sensor channel index
information.

UNITS: N/A

TYPE: CRTM_ChannelInfo_type
DIMENSION: Rank-1 (n_Sensors)
ATTRIBUTES: INTENT(IN)

OUTPUTS:
RTSolution: Structure containing the layer aerosol optical
profile for the given inputs.
UNITS: N/A
TYPE: CRTM_RTSolution_type

DIMENSION: Rank-2 (n_Channels x n_Profiles)
ATTRIBUTES: INTENT(IN OUT)

RTSolution_TL: Structure containing the tangent-linear aerosol
optical depth profile for the given inputs.
UNITS: N/A
TYPE: CRTM_RTSolution_type
DIMENSION: Same as RTSolution output
ATTRIBUTES: INTENT(IN OUT)

OPTIONAL INPUTS:

68

Options: Options structure containing the optional arguments
for the CRTM.
UNITS: N/A
TYPE: CRTM_Options_type
DIMENSION: Same as input Atmosphere structure
ATTRIBUTES: INTENT(IN), OPTIONAL

FUNCTION RESULT:

Error_Status: The return value is an integer defining the error status.
The error codes are defined in the Message_Handler module.
If == SUCCESS the computation was sucessful

== FAILURE an unrecoverable error occurred

UNITS: N/A
TYPE: INTEGER
DIMENSION: Scalar

COMMENTS :
- Many of the components of the Options optional input structure
are not used in this function. Consult the CRTM User Guide for
which Options components are usable for AOD calculations.

69

5.3.3 CRTM_AOD_AD interface

NAME:
CRTM_AOD_AD

PURPOSE:

Function that calculates the adjoint nadir aerosol optical depth.

CALLING SEQUENCE:
Error_Status =

INPUTS:

Atmosphere:

RTSolution_AD:

ChannelInfo:

OUTPUTS:
RTSolution:

Atmosphere_AD:

CRTM_AOD_AD(Atmosphere R
RTSolution_AD R
ChannellInfo s
RTSolution s
Atmosphere_AD s
Options = Options

e

Structure containing the Atmosphere data.
UNITS: N/A

TYPE: CRTM_Atmosphere_type
DIMENSION: Rank-1 (n_Profiles)
ATTRIBUTES: INTENT(IN)

Structure containing the RT solution adjoint inputs.
**NOTE: On EXIT from this function, the contents of
this structure may be modified (e.g. set to

zero.)
UNITS: N/A
TYPE: CRTM_RTSolution_type

DIMENSION: Rank-2 (n_Channels x n_Profiles)
ATTRIBUTES: INTENT(IN OUT)

Structure returned from the CRTM_Init() function
that contains the satellite/sensor channel index
information.

UNITS: N/A

TYPE: CRTM_ChannelInfo_type

DIMENSION: Rank-1 (n_Sensors)

ATTRIBUTES: INTENT(IN)

Structure containing the soluition to the RT equation
for the given inputs.

UNITS: N/A

TYPE: CRTM_RTSolution_type

DIMENSION: Rank-2 (n_Channels x n_Profiles)
ATTRIBUTES: INTENT(IN OUT)

Structure containing the adjoint Atmosphere data.

*xNOTE: On ENTRY to this function, the contents of
this structure should be defined (e.g.
initialized to some value based on the
position of this function in the call chain.)

70

UNITS: N/A

TYPE: CRTM_Atmosphere_type

DIMENSION: Same as input Atmosphere argument
ATTRIBUTES: INTENT(IN OUT)

OPTIONAL INPUTS:

Options: Options structure containing the optional arguments
for the CRTM.
UNITS: N/A
TYPE: CRTM_Options_type

DIMENSION: Same as input Atmosphere structure
ATTRIBUTES: INTENT(IN), OPTIONAL

FUNCTION RESULT:

Error_Status: The return value is an integer defining the error status.
The error codes are defined in the Message_Handler module.
If == SUCCESS the computation was sucessful

== FAILURE an unrecoverable error occurred

UNITS: N/A
TYPE: INTEGER
DIMENSION: Scalar

COMMENTS :
- Many of the components of the Options optional input structure
are not used in this function. Consult the CRTM User Guide for
which Options components are usable for AOD calculations.

71

5.3.4 CRTM_AOD_K interface

NAME:
CRTM_AOD_K

PURPOSE:

Function that calculates the K-matrix nadir aerosol optical depth.

CALLING SEQUENCE:
Error_Status

INPUTS:

Atmosphere:

RTSolution_K:

ChannelInfo:

OUTPUTS:

RTSolution:

Atmosphere_K:

CRTM_AOD_K(Atmosphere R
RTSolution_K ,
ChannelInfo ,
RTSolution s
Atmosphere_K s
Opttions = Options

e

Structure containing the Atmosphere data.
UNITS: N/A

TYPE: CRTM_Atmosphere_type
DIMENSION: Rank-1 (n_Profiles)
ATTRIBUTES: INTENT(IN)

Structure containing the aerosol optical depth

profile K-matrix input.

**NOTE: On EXIT from this function, the contents of
this structure may be modified (e.g. set to

zero.)
UNITS: N/A
TYPE: CRTM_RTSolution_type

DIMENSION: Rank-2 (n_Channels x n_Profiles)
ATTRIBUTES: INTENT(IN 0OUT)

Structure returned from the CRTM_Init() function
that contains the satellite/sensor channel index
information.

UNITS: N/A

TYPE: CRTM_ChannelInfo_type

DIMENSION: Rank-1 (n_Sensors)

ATTRIBUTES: INTENT(IN)

Structure containing the layer aerosol optical
depth profile for the given inputs.

UNITS: N/A

TYPE: CRTM_RTSolution_type

DIMENSION: Rank-2 (n_Channels x n_Profiles)
ATTRIBUTES: INTENT(IN OUT)

Structure containing the K-matrix Atmosphere data.

**NOTE: On ENTRY to this function, the contents of
this structure should be defined (e.g.
initialized to some value based on the

72

position of this function in the call chain.)
UNITS: N/A
TYPE: CRTM_Atmosphere_type
DIMENSION: Same as input RTSolution_K argument
ATTRIBUTES: INTENT(IN OUT)

OPTIONAL INPUTS:

Options: Options structure containing the optional arguments
for the CRTM.
UNITS: N/A
TYPE: CRTM_Options_type

DIMENSION: Same as input Atmosphere structure
ATTRIBUTES: INTENT(IN), OPTIONAL

FUNCTION RESULT:

Error_Status: The return value is an integer defining the error status.
The error codes are defined in the Message_Handler module.
If == SUCCESS the computation was sucessful

== FAILURE an unrecoverable error occurred

UNITS: N/A
TYPE: INTEGER
DIMENSION: Scalar

COMMENTS :
- Many of the components of the Options optional input structure
are not used in this function. Consult the CRTM User Guide for
which Options components are usable for AOD calculations.

73

5.4 Destruction functions

5.4.1 CRTM Destroy interface

NAME:
CRTM_Destroy

PURPOSE:
Function to deallocate all the shared data arrays allocated and
populated during the CRTM initialization.

CALLING SEQUENCE:
Error_Status = CRTM_Destroy(ChannelInfo , &
Process_ID = Process_ID)

OUTPUTS:
ChannelInfo: Reinitialized ChannelInfo structure.
UNITS: N/A
TYPE: CRTM_ChannelInfo_type

DIMENSION: Rank-1
ATTRIBUTES: INTENT(IN 0UT)

OPTIONAL INPUTS:

Process_ID: Set this argument to the MPI process ID that this
function call is running under. This value is used
solely for controlling message output. If MPI is not
being used, ignore this argument.

UNITS: N/A

TYPE: INTEGER

DIMENSION: Scalar

ATTRIBUTES: INTENT(IN), OPTIONAL

FUNCTION RESULT:
Error_Status: The return value is an integer defining the error
status. The error codes are defined in the
Message_Handler module.
If == SUCCESS the CRTM deallocations were successful
== FAILURE an unrecoverable error occurred.
UNITS: N/A
TYPE: INTEGER
DIMENSION: Scalar

SIDE EFFECTS:
A1l CRTM shared data arrays and structures are deallocated.

COMMENTS :
Note the INTENT on the output ChannelInfo argument is IN OUT rather than
just OUT. This is necessary because the argument may be defined upon
input. To prevent memory leaks, the IN OUT INTENT is a must.

74

5.5 Utility functions

5.5.1 CRTM Version interface

NAME:
CRTM_Version

PURPOSE:
Subroutine to the CRTM version information.

CALLING SEQUENCE:
CALL CRTM_Version(version)

OUTPUTS:
version: Character string identifying the CRTM release version.
UNITS: N/A
TYPE: CHARACTER (%)

DIMENSION: Scalar
ATTRIBUTES: INTENT (OUT)

5.5.2 CRTM_IsInitialized interface

NAME:
CRTM_IsInitialized

PURPOSE:
Logical function to test if the CRTM has been correctly initialized.

CALLING SEQUENCE:
status = CRTM_IsInitialized(ChannelInfo)

INPUTS:
ChannelInfo: Channellnfo structure array.
UNITS: N/A
TYPE: CRTM_ChannelInfo_type

DIMENSION: Rank-1
ATTRIBUTES: INTENT(IN)

FUNCTION RESULT:
Status: The return value is a logical result indicating if the
CRTM has been correctly initialised.
If == .TRUE., all the ChannellInfo entries are valid.
== .FALSE., any of the Channellnfo entries are invalid.
UNITS: N/A
TYPE: LOGICAL
DIMENSION: Scalar

75

5.5.3 CRTM_LifeCycleVersion interface

NAME:
CRTM_LifeCycleVersion

PURPOSE:
Subroutine to return the module version information.

CALLING SEQUENCE:
CALL CRTM_LifeCycleVersion(Id)

OUTPUT ARGUMENTS:
Id: Character string containing the version Id information
for the module.
UNITS: N/A
TYPE: CHARACTER (%)
DIMENSION: Scalar
ATTRIBUTES: INTENT(OUT)

5.5.4 CRTM_Forward_Version interface

NAME:
CRTM_Forward_Version

PURPOSE:
Subroutine to return the module version information.

CALLING SEQUENCE:
CALL CRTM_Forward_Version(Id)

OUTPUTS:
Id: Character string containing the version Id information
for the module.
UNITS: N/A
TYPE: CHARACTER ()

DIMENSION: Scalar
ATTRIBUTES: INTENT(OUT)

5.5.5 CRTM_Tangent_Linear_Version interface

NAME:
CRTM_Tangent_Linear_Version

PURPOSE:
Subroutine to return the module version information.

76

CALLING SEQUENCE:
CALL CRTM_Tangent_Linear_Version(Id)

OUTPUTS:
Id: Character string containing the version Id information
for the module.
UNITS: N/A
TYPE: CHARACTER (%)

DIMENSION: Scalar
ATTRIBUTES: INTENT(OUT)

5.5.6 CRTM_Adjoint_Version interface

NAME:
CRTM_Adjoint_Version

PURPOSE:
Subroutine to return the module version information.

CALLING SEQUENCE:
CALL CRTM_Adjoint_Version(Id)

OUTPUTS:
Id: Character string containing the version Id information
for the module.
UNITS: N/A
TYPE: CHARACTER (*)

DIMENSION: Scalar
ATTRIBUTES: INTENT (OUT)

5.5.7 CRTM K Matrix Version interface

NAME:
CRTM_K_Matrix_Version

PURPOSE:
Subroutine to return the module version information.

CALLING SEQUENCE:
CALL CRTM_K_Matrix_Version(Id)

OUTPUTS:
Id: Character string containing the version Id information
for the module.
UNITS: N/A

T

TYPE: CHARACTER (*)
DIMENSION: Scalar
ATTRIBUTES: INTENT(OUT)

5.5.8 CRTM_AOD_Version interface

NAME:
CRTM_AOD_Version

PURPOSE:
Subroutine to return the module version information.

CALLING SEQUENCE:
CALL CRTM_AOD_Version(Id)

OUTPUTS:
Id: Character string containing the version Id information
for the module.
UNITS: N/A
TYPE: CHARACTER (%)

DIMENSION: Scalar
ATTRIBUTES: INTENT(OUT)

78

Bibliography

Y. Chen, Y. Han, P. van Delst, and F. Weng. Validation of shortwave infrared sea surface reflection and non-local
thermodynamic equilibrium effects in Community Radiative Transfer Model using TASI data. submitted to J.
Atmos. Oceanic Technol., 2013.

G. Deblonde. Evaluation of FASTEM and FASTEM2. Research report, EUMETSAT/ECMWEF, Nov. 2000.
URL http://research.metoffice.gov.uk/research/interproj/nwpsaf/rtm/evalfastems.pdf.

S. English and T. Hewison. A fast generic millimeter-wave emissivity model. In Microwave Remote Sensing of
the Atmosphere and Environment, volume 3503, pages 288-300. SPIE, Sep. 1998. doi: 10.1117/12.319490.

A K. Heidinger, C. O’Dell, R. Bennartz, and T. Greenwald. The Successive-Order-of-Interaction Radiative
Transfer Model. Part I: Model Development. J. Appl. Meteorol. Climatol., 45(10):1388-1402, 2006. doi:
10.1175/JAM2387.1.

T.J. Hewison and R. Saunders. Measurements of the AMSU-B antenna pattern. IEEE Trans. Geosci. Remote
Sens., 34(2):405-412, 1996. doi: 10.1109/36.485118.

M. Kazumori, Q. Liu, R. Treadon, and J.C. Derber. Impact study of AMSR-E radiances in the NCEP Global
Data Assimilation System. Mon. Wea. Rev., 136(2):541-559, 2008. doi: 10.1175/200TMWR2147.1.

Q. Liu and E. Ruprecht. Radiative transfer model: matrix operator method. Appl. Opt., 35(21):4229-4237,
1996.

Q. Liu and F. Weng. Advanced doubling-adding method for radiative transfer in planetary atmosphere. J.
Atmos. Sci., 63(12):3459-3465, 2006. doi: 10.1175/JAS3808.1.

Q. Liu, F. Weng, and S.J. English. An improved fast microwave water emissivity model. IFEE Trans. Geosci.
Remote Sens., 49(4):1238-1250, 2011. doi: 10.1109/TGRS.2010.2064779.

T. Mo. AMSU-A Antenna Pattern Corrections. IEEE Trans. Geosci. Remote Sens., 37(1):103-112, 1999.

N.R. Nalli, P.J. Minnett, and P. van Delst. Emissivity and reflection model for calculating unpolarized isotropic
water surface-leaving radiance in the infrared. 1: Theoretical development and calculations. Appl. Opt., 47
(21):3701-3721, 2008a.

N.R. Nalli, P.J. Minnett, E. Maddy, W.W. McMillan, and M.D. Goldberg. Emissivity and reflection model for
calculating unpolarized isotropic water surface-leaving radiance in the infrared. 2: Validation using Fourier
transform spectrometers. Appl. Opt., 47(25):4694-4671, 2008b.

79

http://research.metoffice.gov.uk/research/interproj/nwpsaf/rtm/evalfastems.pdf

A
(Structure and procedure interface definitions

80

A.l1 ChannelInfo Structure

LOGICAL, ALLOCATABLE ::
INTEGER, ALLOCATABLE ::
INTEGER, ALLOCATABLE ::

TYPE :: CRTM_ChannellInfo_type
! Allocation indicator
LOGICAL :: Is_Allocated = .FALSE.
! Dimensions
INTEGER :: n_Channels = 0 ! L dimension
! Scalar data
CHARACTER (STRLEN) :: Sensor_ID = 7
INTEGER :: Sensor_Type = INVALID_SENSOR
INTEGER :: WMO_Satellite_ID = INVALID_WMO_SATELLITE_ID
INTEGER :: WMO_Sensor_ID = INVALID_WMO_SENSOR_ID
INTEGER :: Sensor_Index =0
! Array data

Process_Channel(:)
Sensor_Channel(:)

L
L
Channel_Index(:) L

END TYPE CRTM_ChannelInfo_type

Figure A.1: CRTM_Channellnfo_type structure definition.

81

A.1.1 CRTM_ChannelInfo_Associated interface

NAME:
CRTM_ChannelInfo_Associated

PURPOSE:
Elemental function to test the status of the allocatable components
of a CRTM ChannelInfo object.

CALLING SEQUENCE:
Status = CRTM_ChannelInfo_Associated(ChannelInfo)

0BJECTS:
ChannelInfo: ChannelInfo object which is to have its member’s
status tested.
UNITS: N/A
TYPE: TYPE(CRTM_ChannelInfo_type)

DIMENSION: Scalar or any rank
ATTRIBUTES: INTENT(IN)

FUNCTION RESULT:

Status: The return value is a logical value indicating the
status of the ChannelInfo members.
.TRUE. - if the array components are allocated.
.FALSE. - if the array components are not allocated.
UNITS: N/A
TYPE: LOGICAL

DIMENSION: Same as input ChannelInfo argument

A.1.2 CRTM_ChannelInfo_Channels interface

NAME:
CRTM_ChannelInfo_Channels

PURPOSE:
Pure function to return the list of channels to be processed in a
ChannellInfo object.

CALLING SEQUENCE:
Channels = CRTM_ChannelInfo_Channels(ChannelInfo)

0BJECTS:
ChannelInfo: ChannelInfo object which is to have its channel list queried.
UNITS: N/A
TYPE: TYPE(CRTM_ChannelInfo_type)

DIMENSION: Scalar
ATTRIBUTES: INTENT(IN)

FUNCTION RESULT:

82

Channels: The list of channels to be processed in the ChannelInfo

object.
UNITS: N/A
TYPE: INTEGER

DIMENSION: Rank-1

A.1.3 CRTM ChannelInfo DefineVersion interface

NAME:
CRTM_ChannelInfo_DefineVersion

PURPOSE:
Subroutine to return the module version information.

CALLING SEQUENCE:
CALL CRTM_ChannelInfo_DefineVersion(Id)

OUTPUTS:
Id: Character string containing the version Id information
for the module.
UNITS: N/A
TYPE: CHARACTER (%)

DIMENSION: Scalar
ATTRIBUTES: INTENT(OUT)

A.1.4 CRTM_ChannellInfo _Destroy interface

NAME:
CRTM_ChannelInfo_Destroy

PURPOSE:
Elemental subroutine to re-initialize CRTM ChannelInfo objects.

CALLING SEQUENCE:
CALL CRTM_ChannelInfo_Destroy(ChannelInfo)

0BJECTS:
ChannelInfo: Re-initialized ChannelInfo object.
UNITS: N/A
TYPE: TYPE(CRTM_ChannelInfo_type)

DIMENSION: Scalar or any rank
ATTRIBUTES: INTENT(OUT)

83

A.1.5 CRTM_ChannellInfo_Inspect interface

NAME:
CRTM_ChannelInfo_Inspect

PURPOSE:
Subroutine to print the contents of a CRTM ChannelInfo object
to stdout.

CALLING SEQUENCE:
CALL CRTM_ChannelInfo_Inspect(ChannelInfo)

0BJECTS:
ChannelInfo: ChannelInfo object to display.
UNITS: N/A
TYPE: TYPE(CRTM_ChannelInfo_type)

DIMENSION: Scalar
ATTRIBUTES: INTENT(IN)

A.1.6 CRTM_ChannelInfo_Subset interface

NAME:
CRTM_ChannelInfo_Subset

PURPOSE:
Function to specify a channel subset for processing in the CRTM.
By default, ALL channels are processed. This function allows the
list of channels that are to be processed to be altered.

CALLING SEQUENCE:

Error_Status = CRTM_ChannelInfo_Subset(ChannelInfo , &
Channel_Subset, &
Reset)
OBJECTS:
ChannelInfo: Valid Channellnfo object for which a channel subset is
to be specified.
UNITS: N/A
TYPE: TYPE(CRTM_ChannelInfo_type)

DIMENSION: Scalar
ATTRIBUTES: INTENT(IN OUT)

OPTIONAL INPUTS:
Channel_Subset: An integer array containing the subset list of channels.
Future calls to the CRTM main functions using the passed
ChannellInfo object will process ONLY the channels
specified in this list.
*xx NOTE: This argument is ignored if the Reset optional
*** argument is specified with a .TRUE. value.

84

UNITS: N/A

TYPE: INTEGER

DIMENSION: Rank-1

ATTRIBUTES: INTENT(IN), OPTIONAL

Reset: Logical flag to reset the ChannelInfo object channel
processing subset to ALL channels.
If == .TRUE. Future calls to the CRTM main functions using

the passed ChannelInfo object will process
ALL the channels
== FALSE. Procedure execution is equivalent to the Reset

argument not being specified at all.

UNITS: N/A

TYPE: LOGICAL

DIMENSION: Scalar

ATTRIBUTES: INTENT(IN), OPTIONAL

FUNCTION RESULT:

Error_Status: The return value is an integer defining the error status.
The error codes are defined in the Message_Handler module.
If == SUCCESS the channel subset setting was sucessful
== FAILURE an error occurred
UNITS: N/A
TYPE: INTEGER

DIMENSION: Scalar

COMMENTS :
- The ChannelInfo object can be modified by this procedure.
- An error in this procedure will DISABLE processing for ALL channels.

A.1.7 CRTM ChannelInfo_n_Channels interface

NAME:
CRTM_ChannelInfo_n_Channels

PURPOSE:
Elemental function to return the number of channels flagged for
processing in a ChannelInfo object.

CALLING SEQUENCE:
n_Channels = CRTM_ChannelInfo_n_Channels(ChannelInfo)

0BJECTS:
ChannellInfo: ChannelInfo object which is to have its processed
channels counted.
UNITS: N/A
TYPE: TYPE(CRTM_ChannelInfo_type)
DIMENSION: Scalar or any rank
ATTRIBUTES: INTENT(IN)

85

FUNCTION RESULT:
n_Channels: The number of channels to be processed in the ChannelInfo

object.
UNITS: N/A
TYPE: INTEGER

DIMENSION: Same as input ChannelInfo argument.

86

A.2 Atmosphere Structure

TYPE :: CRTM_Atmosphere_type
! Allocation indicator

LOGICAL :: Is_Allocated = .FALSE.

! Dimension values

INTEGER :: Max_Layers 0 ! K dimension
INTEGER :: n_Layers = 0 ! Kuse dimension
INTEGER :: n_Absorbers = 0 ! J dimension
INTEGER :: Max_Clouds =0 ! Nc dimension
INTEGER :: n_Clouds = 0 ! NcUse dimension
INTEGER :: Max_Aerosols = 0 ! Na dimension
INTEGER :: n_Aerosols = 0 ! NaUse dimension

! Number of added layers

INTEGER :: n_Added_Layers = O

! Climatology model associated with the profile
INTEGER :: Climatology = US_STANDARD_ATMOSPHERE
! Absorber ID and units

INTEGER, ALLOCATABLE :: Absorber_ID(:) rJ
INTEGER, ALLOCATABLE :: Absorber_Units(:) ! J

! Profile LEVEL and LAYER quantities

REAL(fp), ALLOCATABLE :: Level_Pressure(:) ! 0:K
REAL(fp), ALLOCATABLE :: Pressure(:) ' K
REAL(fp), ALLOCATABLE :: Temperature(:) ' K
REAL(fp), ALLOCATABLE :: Absorber(:,:) 'KxJ

! Clouds associated with each profile

TYPE(CRTM_Cloud_type), ALLOCATABLE :: Cloud(:) I Nc

! Aerosols associated with each profile

TYPE(CRTM_Aerosol_type), ALLOCATABLE :: Aerosol(:) ! Na
END TYPE CRTM_Atmosphere_type

Figure A.2: CRTM_Atmosphere_type structure definition.

87

A.2.1 CRTM_Atmosphere_AddLayerCopy interface

NAME:
CRTM_Atmosphere_AddLayerCopy

PURPOSE:
Elemental function to copy an instance of the CRTM Atmosphere object
with additional layers added to the TOA of the input.

CALLING SEQUENCE:
Atm_out = CRTM_Atmosphere_AddLayerCopy(Atm, n_Added_Layers)

OBJECTS:
Atm: Atmosphere structure to copy.
UNITS: N/A
TYPE: CRTM_Atmosphere_type
DIMENSION: Scalar or any rank
ATTRIBUTES: INTENT(OUT)
INPUTS:
n_Added_Layers: Number of layers to add to the function result.
UNITS: N/A
TYPE: INTEGER

DIMENSION: Same as atmosphere object
ATTRIBUTES: INTENT(IN)

FUNCTION RESULT:
Atm_out: Copy of the input atmosphere structure with space for
extra layers added to TOA.
UNITS: N/A
TYPE: CRTM_Atmosphere_type
DIMENSION: Same as input.
ATTRIBUTES: INTENT(OUT)

A.2.2 CRTM_Atmosphere_Associated interface

NAME:
CRTM_Atmosphere_Associated

PURPOSE:
Elemental function to test the status of the allocatable components

of a CRTM Atmosphere object.

CALLING SEQUENCE:
Status = CRTM_Atmosphere_Associated(Atm)

OBJECTS:
Atm: Atmosphere structure which is to have its member’s

88

status tested.

UNITS: N/A

TYPE: CRTM_Atmosphere_type
DIMENSION: Scalar or any rank
ATTRIBUTES: INTENT(IN)

FUNCTION RESULT:

Status: The return value is a logical value indicating the
status of the Atmosphere members.
.TRUE. - if the array components are allocated.
.FALSE. - if the array components are not allocated.
UNITS: N/A
TYPE: LOGICAL

DIMENSION: Same as input

A.2.3 CRTM_Atmosphere_Compare interface

NAME:
CRTM_Atmosphere_Compare

PURPOSE:
Elemental function to compare two CRTM_Atmosphere objects to within
a user specified number of significant figures.

CALLING SEQUENCE:
is_comparable = CRTM_Atmosphere_Compare(x, y, n_SigFig=n_SigFig)

0BJECTS:
X, y: Two CRTM Atmosphere objects to be compared.
UNITS: N/A
TYPE: CRTM_Atmosphere_type

DIMENSION: Scalar or any rank
ATTRIBUTES: INTENT(IN)

OPTIONAL INPUTS:

n_SigFig: Number of significant figure to compare floating point
components.
UNITS: N/A
TYPE: INTEGER

DIMENSION: Scalar or same as input
ATTRIBUTES: INTENT(IN), OPTIONAL

FUNCTION RESULT:

is_equal: Logical value indicating whether the inputs are equal.
UNITS: N/A
TYPE: LOGICAL

DIMENSION: Same as inputs.

89

A.2.4 CRTM_Atmosphere_Create interface

NAME:
CRTM_Atmosphere_Create

PURPOSE:
Elemental subroutine to create an instance of the CRTM Atmosphere object.

CALLING SEQUENCE:

CALL CRTM_Atmosphere_Create(Atm , &
n_Layers , &
n_Absorbers, &
n_Clouds , &
n_Aerosols)

OBJECTS:
Atm: Atmosphere structure.
UNITS: N/A
TYPE: CRTM_Atmosphere_type
DIMENSION: Scalar or any rank
ATTRIBUTES: INTENT(QUT)
INPUTS:
n_Layers: Number of layers dimension.
Must be > O.
UNITS: N/A
TYPE: INTEGER

DIMENSION: Same as atmosphere object
ATTRIBUTES: INTENT(IN)

n_Absorbers: Number of absorbers dimension.

Must be > 0.
UNITS: N/A
TYPE: INTEGER

DIMENSION: Same as atmosphere object
ATTRIBUTES: INTENT(IN)

n_Clouds: Number of clouds dimension.
Can be = 0 (i.e. clear sky).
UNITS: N/A
TYPE: INTEGER

DIMENSION: Same as atmosphere object
ATTRIBUTES: INTENT(IN)

n_Aerosols: Number of aerosols dimension.
Can be = 0 (i.e. no aerosols).
UNITS: N/A
TYPE: INTEGER

DIMENSION: Same as atmosphere object
ATTRIBUTES: INTENT(IN)

90

A.2.5 CRTM_Atmosphere DefineVersion interface

NAME:
CRTM_Atmosphere_DefineVersion

PURPOSE:
Subroutine to return the module version information.

CALLING SEQUENCE:
CALL CRTM_Atmosphere_DefineVersion(Id)

OUTPUTS:
Id: Character string containing the version Id information
for the module.
UNITS: N/A
TYPE: CHARACTER (%)

DIMENSION: Scalar
ATTRIBUTES: INTENT (OUT)

A.2.6 CRTM_Atmosphere_Destroy interface

NAME:
CRTM_Atmosphere_Destroy

PURPOSE:
Elemental subroutine to re-initialize CRTM Atmosphere objects.

CALLING SEQUENCE:
CALL CRTM_Atmosphere_Destroy(Atm)

0BJECTS:
Atm: Re-initialized Atmosphere structure.
UNITS: N/A
TYPE: CRTM_Atmosphere_type

DIMENSION: Scalar or any rank
ATTRIBUTES: INTENT(OUT)

A.2.7 CRTM_Atmosphere_InquireFile interface

NAME:
CRTM_Atmosphere_InquireFile

PURPOSE:
Function to inquire CRTM Atmosphere object files.

91

CALLING SEQUENCE:
Error_Status = CRTM_Atmosphere_InquireFile(Filename , &
n_Channels n_Channels, &
n_Profiles = n_Profiles)

INPUTS:
Filename: Character string specifying the name of a
CRTM Atmosphere data file to read.
UNITS: N/A
TYPE: CHARACTER (%)
DIMENSION: Scalar
ATTRIBUTES: INTENT(IN)

OPTIONAL OUTPUTS:

n_Channels: The number of spectral channels for which there is
data in the file. Note that this value will always
be 0 for a profile-only dataset-- it only has meaning
for K-matrix data.
UNITS: N/A
TYPE: INTEGER
DIMENSION: Scalar
ATTRIBUTES: OPTIONAL, INTENT(OUT)

n_Profiles: The number of profiles in the data file.
UNITS: N/A
TYPE: INTEGER

DIMENSION: Scalar
ATTRIBUTES: OPTIONAL, INTENT(OQUT)

FUNCTION RESULT:

Error_Status: The return value is an integer defining the error status.
The error codes are defined in the Message_Handler module.
If == SUCCESS, the file inquire was successful

== FAILURE, an unrecoverable error occurred.

UNITS: N/A
TYPE: INTEGER
DIMENSION: Scalar

A.2.8 CRTM_Atmosphere_Inspect interface
NAME:
CRTM_Atmosphere_Inspect

PURPOSE:
Subroutine to print the contents of a CRTM Atmosphere object to stdout.

CALLING SEQUENCE:
CALL CRTM_Atmosphere_Inspect(Atm)

INPUTS:

92

Atm: CRTM Atmosphere object to display.
UNITS: N/A
TYPE: CRTM_Atmosphere_type
DIMENSION: Scalar, Rank-1, or Rank-2 array
ATTRIBUTES: INTENT(IN)

A.2.9 CRTM_Atmosphere IsValid interface
NAME:
CRTM_Atmosphere_IsValid
PURPOSE:
Non-pure function to perform some simple validity checks on a
CRTM Atmosphere object.

If invalid data is found, a message is printed to stdout.

CALLING SEQUENCE:
result = CRTM_Atmosphere_IsValid(Atm)

or

IF (CRTM_Atmosphere_IsValid(Atm)) THEN....

0BJECTS:
Atm: CRTM Atmosphere object which is to have its
contents checked.
UNITS: N/A
TYPE: CRTM_Atmosphere_type

DIMENSION: Scalar
ATTRIBUTES: INTENT(IN)

FUNCTION RESULT:

result: Logical variable indicating whether or not the input
passed the check.
If == .FALSE., Atmosphere object is unused or contains

invalid data.
== .TRUE., Atmosphere object can be used in CRTM.

UNITS: N/A
TYPE: LOGICAL
DIMENSION: Scalar

A.2.10 CRTM_Atmosphere ReadFile interface

NAME:
CRTM_Atmosphere_ReadFile

93

PURPOSE:
Function to read CRTM Atmosphere object files.

CALLING SEQUENCE:

Error_Status = CRTM_Atmosphere_ReadFile(Filename , &
Atmosphere , &
Quiet = Quiet , &
n_Channels = n_Channels , &
n_Profiles = n_Profiles , &
INPUTS:
Filename: Character string specifying the name of an
Atmosphere format data file to read.
UNITS: N/A
TYPE: CHARACTER (%)
DIMENSION: Scalar
ATTRIBUTES: INTENT(IN)
OUTPUTS:

Atmosphere: CRTM Atmosphere object array containing the Atmosphere
data. Note the following meanings attributed to the
dimensions of the object array:

Rank-1: M profiles.
Only profile data are to be read in. The file
does not contain channel information. The
dimension of the structure is understood to
be the PROFILE dimension.

Rank-2: L channels x M profiles
Channel and profile data are to be read in.
The file contains both channel and profile
information. The first dimension of the
structure is the CHANNEL dimension, the second
is the PROFILE dimension. This is to allow
K-matrix structures to be read in with the
same function.

UNITS: N/A

TYPE: CRTM_Atmosphere_type

DIMENSION: Rank-1 (M) or Rank-2 (L x M)

ATTRIBUTES: INTENT(OUT)

OPTIONAL INPUTS:
Quiet: Set this logical argument to suppress INFORMATION
messages being printed to stdout
If == .FALSE., INFORMATION messages are OUTPUT [DEFAULT].
== .TRUE., INFORMATION messages are SUPPRESSED.
If not specified, default is .FALSE.
UNITS: N/A
TYPE: LOGICAL
DIMENSION: Scalar
ATTRIBUTES: INTENT(IN), OPTIONAL

OPTIONAL OUTPUTS:
n_Channels: The number of channels for which data was read. Note that

94

this value will always be O for a profile-only dataset--
it only has meaning for K-matrix data.

UNITS: N/A

TYPE: INTEGER

DIMENSION: Scalar

ATTRIBUTES: OPTIONAL, INTENT(OUT)

n_Profiles: The number of profiles for which data was read.
UNITS: N/A
TYPE: INTEGER

DIMENSION: Scalar
ATTRIBUTES: OPTIONAL, INTENT(OUT)

FUNCTION RESULT:

Error_Status: The return value is an integer defining the error status.
The error codes are defined in the Message_Handler module.
If == SUCCESS, the file read was successful

== FAILURE, an unrecoverable error occurred.

UNITS: N/A
TYPE: INTEGER
DIMENSION: Scalar

A.2.11 CRTM_Atmosphere_SetLayers interface

NAME:
CRTM_Atmosphere_SetLayers

PURPOSE:
Elemental subroutine to set the working number of layers to use
in a CRTM Atmosphere object.

CALLING SEQUENCE:
CALL CRTM_Atmosphere_SetLayers(Atmosphere, n_Layers)

OBJECT:
Atmosphere: CRTM Atmosphere object which is to have its working number
of layers updated.
UNITS: N/A
TYPE: CRTM_Atmosphere_type
DIMENSION: Scalar or any rank
ATTRIBUTES: INTENT(IN OUT)
INPUTS:
n_Layers: The value to set the n_Layers component of the
Atmosphere object.
UNITS: N/A
TYPE: CRTM_Atmosphere_type

DIMENSION: Conformable with the Atmosphere object argument
ATTRIBUTES: INTENT(IN)

95

COMMENTS :
- The object is zeroed upon output.

- If n_Layers <= Atmosphere/Max_Layers, then only the n_Layers dimension
value of the object, as well as any contained objects, is changed.

- If n_Layers > Atmosphere)Max_Layers, then the object is reallocated
to the required number of layers. No other dimensions of the object
or contained objects are altered.

A.2.12 CRTM_Atmosphere _WriteFile interface

NAME:
CRTM_Atmosphere_WriteFile

PURPOSE:
Function to write CRTM Atmosphere object files.

CALLING SEQUENCE:
Error_Status = CRTM_Atmosphere_WriteFile(Filename , &
Atmosphere , &
Quiet = Quiet)

INPUTS:
Filename: Character string specifying the name of the
Atmosphere format data file to write.
UNITS: N/A
TYPE: CHARACTER (%)

DIMENSION: Scalar
ATTRIBUTES: INTENT(IN)

Atmosphere: CRTM Atmosphere object array containing the Atmosphere
data. Note the following meanings attributed to the
dimensions of the Atmosphere array:

Rank-1: M profiles.
Only profile data are to be read in. The file
does not contain channel information. The
dimension of the array is understood to
be the PROFILE dimension.

Rank-2: L channels x M profiles
Channel and profile data are to be read in.
The file contains both channel and profile
information. The first dimension of the
array is the CHANNEL dimension, the second
is the PROFILE dimension. This is to allow
K-matrix structures to be read in with the
same function.

UNITS: N/A

TYPE: CRTM_Atmosphere_type

96

OPTIONAL INPUTS:
Quiet:

FUNCTION RESULT:
Error_Status:

SIDE EFFECTS:

DIMENSION: Rank-1 (M) or Rank-2 (L x M)
ATTRIBUTES: INTENT(IN)

Set this logical argument to suppress INFORMATION

messages being printed to stdout

If == .FALSE., INFORMATION messages are OUTPUT [DEFAULT].
== .TRUE., INFORMATION messages are SUPPRESSED.

If not specified, default is .FALSE.

UNITS: N/A

TYPE: LOGICAL

DIMENSION: Scalar

ATTRIBUTES: INTENT(IN), OPTIONAL

The return value is an integer defining the error status.
The error codes are defined in the Message_Handler module.
If == SUCCESS, the file write was successful

== FAILURE, an unrecoverable error occurred.
UNITS: N/A
TYPE: INTEGER
DIMENSION: Scalar

- If the output file already exists, it is overwritten.
- If an error occurs during *writing*, the output file is deleted before
returning to the calling routine.

A.2.13 CRTM_Atmosphere_Zero interface

NAME:

CRTM_Atmosphere_Zero

PURPOSE:

Elemental subroutine to zero out the data arrays
in a CRTM Atmosphere object.

CALLING SEQUENCE:

CALL CRTM_Atmosphere_Zero(Atm)

OQUTPUTS:
Atm:

COMMENTS:

CRTM Atmosphere structure in which the data arrays
are to be zeroed out.

UNITS: N/A

TYPE: CRTM_Atmosphere_type

DIMENSION: Scalar or any rank

ATTRIBUTES: INTENT(IN OUT)

- The dimension components of the structure are *NOT* set to zero.

97

- The Climatology, Absorber_ID, and Absorber_Units components are
NOT reset in this routine.

A.2.14 CRTM Get_AbsorberIdx interface

NAME:
CRTM_Get_AbsorberIdx

PURPOSE:
Function to determine the index of the requested absorber in the
CRTM Atmosphere structure absorber component.

CALLING SEQUENCE:
Idx = CRTM_Get_AbsorberIdx(Atm, AbsorberId)

INPUTS:
Atm: CRTM Atmosphere structure.
UNITS: N/A
TYPE: CRTM_Atmosphere_type
DIMENSION: Scalar
ATTRIBUTES: INTENT(IN)

AbsorberId: Integer value used to identify absorbing molecular
species. The accepted absorber Ids are defined in
this module.

UNITS: N/A

TYPE: INTEGER
DIMENSION: Scalar
ATTRIBUTES: INTENT(IN)

FUNCTION RESULT:
Idx: Index of the requested absorber in the

Atm)Absorber array component.
If the requested absorber cannot be found,
a value of -1 is returned.
UNITS: N/A
TYPE: INTEGER
DIMENSION: Scalar

A.2.15 CRTM Get_PressureLevelldx interface

NAME:
CRTM_Get_PressurelLevelldx

PURPOSE:
Function to determine the index in the CRTM Atmosphere structure

98

pressure level array component that corresponds to the value
closest to the requested level pressure.

CALLING SEQUENCE:

Idx = CRTM_Get_Pressurelevelldx(Atm, Level_Pressure)

INPUTS:
Atm:

Level_Pressure:

FUNCTION RESULT:
Idx:

CRTM Atmosphere structure.
UNITS: N/A

TYPE: CRTM_Atmosphere_type
DIMENSION: Scalar

ATTRIBUTES: INTENT(IN)

Level pressure for which the index in the atmosphere
structure level pressure profile is required.

UNITS: N/A

TYPE: REAL (fp)

DIMENSION: Scalar

ATTRIBUTES: INTENT(IN)

Index of the level in the Atm)Level_Pressure
array component for the closest value to the
input level pressure.

UNITS: N/A

TYPE: INTEGER

DIMENSION: Scalar

99

A.3 Cloud Structure

TYPE :: CRTM_Cloud_type
! Allocation indicator
LOGICAL :: Is_Allocated
! Dimension values
INTEGER :: Max_Layers =
INTEGER :: n_Layers
! Number of added layers
INTEGER :: n_Added_Layers = 0O
! Cloud type
INTEGER :: Type = INVALID_CLOUD
! Cloud state variables

.FALSE.

I K dimension.
! Kuse dimension.

]
o O

REAL(fp), ALLOCATABLE :: Effective_Radius(:) ! K. Units are microns
REAL(fp), ALLOCATABLE :: Effective_Variance(:) ! K. Units are microns~2
REAL(fp), ALLOCATABLE :: Water_Content(:) I K. Units are kg/m"2

END TYPE CRTM_Cloud_type

Figure A.3: CRTM_Cloud_type structure definition.

100

A.3.1 CRTM_Cloud_AddLayerCopy interface

NAME:
CRTM_Cloud_AddLayerCopy

PURPOSE:
Elemental function to copy an instance of the CRTM Cloud object
with additional layers added to the TOA of the input.

CALLING SEQUENCE:
cld_out = CRTM_Cloud_AddLayerCopy(cld, n_Added_Layers)

OBJECTS:
clad: Cloud structure to copy.
UNITS: N/A
TYPE: CRTM_Cloud_type
DIMENSION: Scalar or any rank
ATTRIBUTES: INTENT(OUT)
INPUTS:
n_Added_Layers: Number of layers to add to the function result.
UNITS: N/A
TYPE: INTEGER

DIMENSION: Same as Cloud object
ATTRIBUTES: INTENT(IN)

FUNCTION RESULT:
cld_out: Copy of the input Cloud structure with space for
extra layers added to TOA.
UNITS: N/A
TYPE: CRTM_Cloud_type
DIMENSION: Same as input.
ATTRIBUTES: INTENT(OUT)

A.3.2 CRTM_Cloud_Associated interface

NAME:
CRTM_Cloud_Associated

PURPOSE:
Elemental function to test the status of the allocatable components

of a CRTM Cloud object.

CALLING SEQUENCE:
Status = CRTM_Cloud_Associated(Cloud)

OBJECTS:
Cloud: Cloud structure which is to have its member’s

101

status tested.

UNITS: N/A

TYPE: CRTM_Cloud_type
DIMENSION: Scalar or any rank
ATTRIBUTES: INTENT(IN)

FUNCTION RESULT:
Status: The return value is a logical value indicating the
status of the Cloud members.

.TRUE. - if the array components are allocated.
.FALSE. - if the array components are not allocated.
UNITS: N/A
TYPE: LOGICAL

DIMENSION: Same as input Cloud argument

A.3.3 CRTM_Cloud_Compare interface

NAME:
CRTM_Cloud_Compare

PURPOSE:
Elemental function to compare two CRTM_Cloud objects to within
a user specified number of significant figures.

CALLING SEQUENCE:
is_comparable = CRTM_Cloud_Compare(x, y, n_SigFig=n_SigFig)

OBJECTS:
X, y: Two CRTM Cloud objects to be compared.
UNITS: N/A
TYPE: CRTM_Cloud_type

DIMENSION: Scalar or any rank
ATTRIBUTES: INTENT(IN)

OPTIONAL INPUTS:

n_SigFig: Number of significant figure to compare floating point
components.
UNITS: N/A
TYPE: INTEGER

DIMENSION: Scalar or same as input
ATTRIBUTES: INTENT(IN), OPTIONAL

FUNCTION RESULT:

is_equal: Logical value indicating whether the inputs are equal.
UNITS: N/A
TYPE: LOGICAL

DIMENSION: Same as inputs.

102

A.3.4 CRTM_Cloud_Create interface

NAME:
CRTM_Cloud_Create

PURPOSE:
Elemental subroutine to create an instance of the CRTM Cloud object.

CALLING SEQUENCE:
CALL CRTM_Cloud_Create(Cloud, n_Layers)

OBJECTS:
Cloud: Cloud structure.
UNITS: N/A
TYPE: CRTM_Cloud_type
DIMENSION: Scalar or any rank
ATTRIBUTES: INTENT(QOUT)
INPUTS:
n_Layers: Number of layers for which there is cloud data.
Must be > O.
UNITS: N/A
TYPE: INTEGER

DIMENSION: Same as Cloud object
ATTRIBUTES: INTENT(IN)

A.3.5 CRTM _Cloud_DefineVersion interface

NAME:
CRTM_Cloud_DefineVersion

PURPOSE:
Subroutine to return the module version information.

CALLING SEQUENCE:
CALL CRTM_Cloud_DefineVersion(Id)

OUTPUTS:
Id: Character string containing the version Id information
for the module.
UNITS: N/A
TYPE: CHARACTER (%)

DIMENSION: Scalar
ATTRIBUTES: INTENT (OUT)

103

A.3.6 CRTM_Cloud Destroy interface

NAME:
CRTM_Cloud_Destroy

PURPOSE:
Elemental subroutine to re-initialize CRTM Cloud objects.

CALLING SEQUENCE:
CALL CRTM_Cloud_Destroy(Cloud)

OBJECTS:
Cloud: Re-initialized Cloud structure.
UNITS: N/A
TYPE: CRTM_Cloud_type

DIMENSION: Scalar OR any rank
ATTRIBUTES: INTENT(QOUT)

A.3.7 CRTM_Cloud_InquireFile interface

NAME:
CRTM_Cloud_InquireFile

PURPOSE:
Function to inquire CRTM Cloud object files.

CALLING SEQUENCE:
Error_Status = CRTM_Cloud_InquireFile(Filename , &
n_Clouds = n_Clouds)

INPUTS:
Filename: Character string specifying the name of a
CRTM Cloud data file to read.
UNITS: N/A
TYPE: CHARACTER ()
DIMENSION: Scalar
ATTRIBUTES: INTENT(IN)

OPTIONAL OUTPUTS:

n_Clouds: The number of Cloud profiles in the data file.
UNITS: N/A
TYPE: INTEGER

DIMENSION: Scalar
ATTRIBUTES: OPTIONAL, INTENT(OUT)

FUNCTION RESULT:
Error_Status: The return value is an integer defining the error status.
The error codes are defined in the Message_Handler module.
If == SUCCESS, the file inquire was successful

104

== FAILURE, an unrecoverable error occurred.
UNITS: N/A
TYPE: INTEGER
DIMENSION: Scalar

A.3.8 CRTM_Cloud_Inspect interface

NAME:
CRTM_Cloud_Inspect

PURPOSE:
Subroutine to print the contents of a CRTM Cloud object to stdout.

CALLING SEQUENCE:
CALL CRTM_Cloud_Inspect(Cloud)

INPUTS:
Cloud: CRTM Cloud object to display.
UNITS: N/A
TYPE: CRTM_Cloud_type

DIMENSION: Scalar, Rank-1, or Rank-2 array
ATTRIBUTES: INTENT(IN)

A.3.9 CRTM_Cloud_IsValid interface
NAME:
CRTM_Cloud_IsValid
PURPOSE:
Non-pure function to perform some simple validity checks on a
CRTM Cloud object.

If invalid data is found, a message is printed to stdout.

CALLING SEQUENCE:
result = CRTM_Cloud_IsValid(cloud)

or

IF (CRTM_Cloud_IsValid(cloud)) THEN....

OBJECTS:
cloud: CRTM Cloud object which is to have its
contents checked.
UNITS: N/A
TYPE: CRTM_Cloud_type

105

FUNCTION RESULT:
result:

DIMENSION: Scalar
ATTRIBUTES: INTENT(IN)

Logical variable indicating whether or not the input
passed the check.
If == .FALSE., Cloud object is unused or contains
invalid data.

== .TRUE., Cloud object can be used in CRTM.
UNITS: N/A
TYPE: LOGICAL
DIMENSION: Scalar

A.3.10 CRTM _Cloud_ReadFile interface

NAME:

CRTM_Cloud_ReadFile

PURPOSE:

Function to read CRTM Cloud object files.

CALLING SEQUENCE:

Error_Status = CRTM_Cloud_ReadFile(Filename , &
Cloud , &
Quiet = Quiet , &
No_Close = No_Close, &
n_Clouds = n_Clouds)

INPUTS:
Filename:

OUTPUTS:
Cloud:

OPTIONAL INPUTS:

Quiet:

Character string specifying the name of a
Cloud format data file to read.

UNITS: N/A

TYPE: CHARACTER (*)

DIMENSION: Scalar

ATTRIBUTES: INTENT(IN)

CRTM Cloud object array containing the Cloud data.
UNITS: N/A

TYPE: CRTM_Cloud_type

DIMENSION: Rank-1

ATTRIBUTES: INTENT(OUT)

Set this logical argument to suppress INFORMATION

messages being printed to stdout

If == .FALSE., INFORMATION messages are OUTPUT [DEFAULT].
== .TRUE., INFORMATION messages are SUPPRESSED.

If not specified, default is .FALSE.

UNITS: N/A

106

No_Close:

OPTIONAL OUTPUTS:
n_Clouds:

FUNCTION RESULT:

Error_Status:

TYPE: LOGICAL
DIMENSION: Scalar
ATTRIBUTES: INTENT(IN), OPTIONAL

Set this logical argument to NOT close the file upon exit.

If == .FALSE., the input file is closed upon exit [DEFAULT]
== .TRUE., the input file is NOT closed upon exit.

If not specified, default is .FALSE.

UNITS: N/A

TYPE: LOGICAL

DIMENSION: Scalar

ATTRIBUTES: INTENT(IN), OPTIONAL

The actual number of cloud profiles read in.
UNITS: N/A

TYPE: INTEGER

DIMENSION: Scalar

ATTRIBUTES: OPTIONAL, INTENT(OUT)

The return value is an integer defining the error status.
The error codes are defined in the Message_Handler module.
If == SUCCESS, the file read was successful

== FAILURE, an unrecoverable error occurred.
UNITS: N/A
TYPE: INTEGER
DIMENSION: Scalar

A.3.11 CRTM_Cloud_SetLayers interface

NAME:

CRTM_Cloud_SetLayers

PURPOSE:

Elemental subroutine to set the working number of layers to use
in a CRTM Cloud object.

CALLING SEQUENCE:

CALL CRTM_Cloud_SetLayers(Cloud, n_Layers)

OBJECT:
Cloud:

INPUTS:

CRTM Cloud object which is to have its working number
of layers updated.

UNITS: N/A

TYPE: CRTM_Cloud_type

DIMENSION: Scalar or any rank

ATTRIBUTES: INTENT(IN OUT)

107

n_Layers: The value to set the n_Layers component of the
Cloud object.
UNITS: N/A
TYPE: CRTM_Cloud_type
DIMENSION: Conformable with the Cloud object argument
ATTRIBUTES: INTENT(IN)

COMMENTS :
- The object is zeroed upon output.

- If n_Layers <= CloudMax_Layers, then only the dimension value
of the object is changed.

- If n_Layers > Cloud)Max_Layers, then the object is reallocated
to the required number of layers.

A.3.12 CRTM_Cloud_WriteFile interface

NAME:
CRTM_Cloud_WriteFile

PURPOSE:
Function to write CRTM Cloud object files.

CALLING SEQUENCE:
Error_Status = CRTM_Cloud_WriteFile(Filename , &
Cloud , &
&
)

Quiet Quiet ,
No_Close No_Close

INPUTS:
Filename: Character string specifying the name of the
Cloud format data file to write.
UNITS: N/A
TYPE: CHARACTER (%)
DIMENSION: Scalar
ATTRIBUTES: INTENT(IN)

Cloud: CRTM Cloud object array containing the Cloud data.
UNITS: N/A
TYPE: CRTM_Cloud_type
DIMENSION: Rank-1
ATTRIBUTES: INTENT(IN)

OPTIONAL INPUTS:
Quiet: Set this logical argument to suppress INFORMATION
messages being printed to stdout
If == .FALSE., INFORMATION messages are OUTPUT [DEFAULT].
== .TRUE., INFORMATION messages are SUPPRESSED.
If not specified, default is .FALSE.

108

UNITS: N/A

TYPE: LOGICAL

DIMENSION: Scalar

ATTRIBUTES: INTENT(IN), OPTIONAL

No_Close: Set this logical argument to NOT close the file upon exit.
If == .FALSE., the input file is closed upon exit [DEFAULT]
== .TRUE., the input file is NOT closed upon exit.
If not specified, default is .FALSE.
UNITS: N/A
TYPE: LOGICAL
DIMENSION: Scalar
ATTRIBUTES: INTENT(IN), OPTIONAL

FUNCTION RESULT:

Error_Status: The return value is an integer defining the error status.
The error codes are defined in the Message_Handler module.
If == SUCCESS, the file write was successful

== FAILURE, an unrecoverable error occurred.

UNITS: N/A
TYPE: INTEGER
DIMENSION: Scalar

SIDE EFFECTS:
- If the output file already exists, it is overwritten.
- If an error occurs during *writing*, the output file is deleted before
returning to the calling routine.

A.3.13 CRTM _Cloud_Zero interface

NAME:
CRTM_Cloud_Zero

PURPOSE:
Elemental subroutine to zero out the data arrays in a CRTM Cloud object.

CALLING SEQUENCE:
CALL CRTM_Cloud_Zero(Cloud)

0BJECTS:
Cloud: CRTM Cloud structure in which the data arrays are

to be zeroed out.
UNITS: N/A
TYPE: CRTM_Cloud_type
DIMENSION: Scalar or any rank
ATTRIBUTES: INTENT(IN OUT)

COMMENTS:

- The dimension components of the structure are *NOT* set to zero.
- The cloud type component is *NOT* reset.

109

110

A.4 Aerosol Structure

TYPE :: CRTM_Aerosol_type
! Allocation indicator
LOGICAL :: Is_Allocated = .FALSE.
! Dimension values
INTEGER :: Max_Layers =
INTEGER :: n_Layers
! Number of added layers
INTEGER :: n_Added_Layers = 0O
! Aerosol type
INTEGER :: Type = INVALID_AEROSOL
! Aerosol state variables
REAL(fp), ALLOCATABLE :: Effective_Radius(:) ! K. Units are microns
REAL(fp), ALLOCATABLE :: Concentration(:) ! K. Units are kg/m"2
END TYPE CRTM_Aerosol_type

o

I K dimension.
! Kuse dimension

1]
o

Figure A.4: CRTM_Aerosol_type structure definition.

111

A.4.1 CRTM_Aerosol_AddLayerCopy interface

NAME:
CRTM_Aerosol_AddLayerCopy

PURPOSE:
Elemental function to copy an instance of the CRTM Aerosol object
with additional layers added to the TOA of the input.

CALLING SEQUENCE:
aer_out = CRTM_Aerosol_AddLayerCopy(aer, n_Added_Layers)

OBJECTS:
aer: Aerosol structure to copy.
UNITS: N/A
TYPE: CRTM_Aerosol_type
DIMENSION: Scalar or any rank
ATTRIBUTES: INTENT(OUT)
INPUTS:
n_Added_Layers: Number of layers to add to the function result.
UNITS: N/A
TYPE: INTEGER

DIMENSION: Same as Aerosol object
ATTRIBUTES: INTENT(IN)

FUNCTION RESULT:
aer_out: Copy of the input Aerosol structure with space for
extra layers added to TOA.
UNITS: N/A
TYPE: CRTM_Aerosol_type
DIMENSION: Same as input.
ATTRIBUTES: INTENT(OUT)

A.4.2 CRTM_Aerosol_Associated interface

NAME:
CRTM_Aerosol_Associated

PURPOSE:
Elemental function to test the status of the allocatable components

of a CRTM Aerosol object.

CALLING SEQUENCE:
Status = CRTM_Aerosol_Associated(Aerosol)

OBJECTS:
Aerosol: Aerosol structure which is to have its member’s

112

status tested.

UNITS: N/A

TYPE: CRTM_Aerosol_type
DIMENSION: Scalar or any rank
ATTRIBUTES: INTENT(IN)

FUNCTION RESULT:
Status: The return value is a logical value indicating the
status of the Aerosol members.

.TRUE. - if the array components are allocated.
.FALSE. - if the array components are not allocated.
UNITS: N/A
TYPE: LOGICAL

DIMENSION: Same as input Aerosol argument

A.4.3 CRTM_Aerosol_Compare interface

NAME:
CRTM_Aerosol_Compare

PURPOSE:
Elemental function to compare two CRTM_Aerosol objects to within
a user specified number of significant figures.

CALLING SEQUENCE:
is_comparable = CRTM_Aerosol_Compare(x, y, n_SigFig=n_SigFig)

0BJECTS:
X, y: Two CRTM Aerosol objects to be compared.
UNITS: N/A
TYPE: CRTM_Aerosol_type

DIMENSION: Scalar or any rank
ATTRIBUTES: INTENT(IN)

OPTIONAL INPUTS:

n_SigFig: Number of significant figure to compare floating point
components.
UNITS: N/A
TYPE: INTEGER

DIMENSION: Scalar or same as input
ATTRIBUTES: INTENT(IN), OPTIONAL

FUNCTION RESULT:

is_equal: Logical value indicating whether the inputs are equal.
UNITS: N/A
TYPE: LOGICAL

DIMENSION: Same as inputs.

113

A.4.4 CRTM_Aerosol_Create interface

NAME:
CRTM_Aerosol_Create

PURPOSE:
Elemental subroutine to create an instance of the CRTM Aerosol object.

CALLING SEQUENCE:
CALL CRTM_Aerosol_Create(Aerosol, n_Layers)

OBJECTS:
Aerosol: Aerosol structure.
UNITS: N/A
TYPE: CRTM_Aerosol_type
DIMENSION: Scalar or any rank
ATTRIBUTES: INTENT(QOUT)
INPUTS:
n_Layers: Number of layers for which there is Aerosol data.
Must be > O.
UNITS: N/A
TYPE: INTEGER

DIMENSION: Same as Aerosol object
ATTRIBUTES: INTENT(IN)

A.4.5 CRTM Aerosol_DefineVersion interface

NAME:
CRTM_Aerosol_DefineVersion

PURPOSE:
Subroutine to return the module version information.

CALLING SEQUENCE:
CALL CRTM_Aerosol_DefineVersion(Id)

OUTPUTS:
Id: Character string containing the version Id information
for the module.
UNITS: N/A
TYPE: CHARACTER (%)

DIMENSION: Scalar
ATTRIBUTES: INTENT (OUT)

114

A.4.6 CRTM_Aerosol Destroy interface

NAME:
CRTM_Aerosol_Destroy

PURPOSE:
Elemental subroutine to re-initialize CRTM Aerosol objects.

CALLING SEQUENCE:
CALL CRTM_Aerosol_Destroy(Aerosol)

OBJECTS:
Aerosol: Re-initialized Aerosol structure.
UNITS: N/A
TYPE: CRTM_Aerosol_type

DIMENSION: Scalar OR any rank
ATTRIBUTES: INTENT(QOUT)

A.4.7 CRTM_Aerosol_InquireFile interface

NAME:
CRTM_Aerosol_InquireFile

PURPOSE:
Function to inquire CRTM Aerosol object files.

CALLING SEQUENCE:
Error_Status = CRTM_Aerosol_InquireFile(Filename , &
n_Aerosols = n_Aerosols)

INPUTS:
Filename: Character string specifying the name of a
CRTM Aerosol data file to read.
UNITS: N/A
TYPE: CHARACTER ()
DIMENSION: Scalar
ATTRIBUTES: INTENT(IN)

OPTIONAL OUTPUTS:

n_Aerosols: The number of Aerosol profiles in the data file.
UNITS: N/A
TYPE: INTEGER

DIMENSION: Scalar
ATTRIBUTES: OPTIONAL, INTENT(OUT)

FUNCTION RESULT:
Error_Status: The return value is an integer defining the error status.
The error codes are defined in the Message_Handler module.
If == SUCCESS, the file inquire was successful

115

== FAILURE, an unrecoverable error occurred.
UNITS: N/A
TYPE: INTEGER
DIMENSION: Scalar

A.4.8 CRTM_Aerosol_Inspect interface

NAME:
CRTM_Aerosol_Inspect

PURPOSE:
Subroutine to print the contents of a CRTM Aerosol object to stdout.

CALLING SEQUENCE:
CALL CRTM_Aerosol_Inspect(Aerosol)

INPUTS:
Aerosol: CRTM Aerosol object to display.
UNITS: N/A
TYPE: CRTM_Aerosol_type

DIMENSION: Scalar, Rank-1, or Rank-2 array
ATTRIBUTES: INTENT(IN)

A.4.9 CRTM_Aerosol_IsValid interface
NAME:
CRTM_Aerosol_IsValid
PURPOSE:
Non-pure function to perform some simple validity checks on a
CRTM Aerosol object.

If invalid data is found, a message is printed to stdout.

CALLING SEQUENCE:
result = CRTM_Aerosol_IsValid(Aerosol)

or

IF (CRTM_Aerosol_IsValid(Aerosol)) THEN....

OBJECTS:
Aerosol: CRTM Aerosol object which is to have its
contents checked.
UNITS: N/A
TYPE: CRTM_Aerosol_type

116

DIMENSION: Scalar
ATTRIBUTES: INTENT(IN)

FUNCTION RESULT:

result: Logical variable indicating whether or not the input
passed the check.
If == .FALSE., Aerosol object is unused or contains

invalid data.
== .TRUE., Aerosol object can be used in CRTM.

UNITS: N/A
TYPE: LOGICAL
DIMENSION: Scalar

A.4.10 CRTM_Aerosol_ReadFile interface
NAME:
CRTM_Aerosol_ReadFile

PURPOSE:
Function to read CRTM Aerosol object files.

CALLING SEQUENCE:

Error_Status = CRTM_Aerosol_ReadFile(Filename , &
Aerosol , &
Quiet = Quiet , &
No_Close = No_Close , &
n_Aerosols = n_Aerosols)
INPUTS:
Filename: Character string specifying the name of a
Aerosol format data file to read.
UNITS: N/A
TYPE: CHARACTER (*)
DIMENSION: Scalar
ATTRIBUTES: INTENT(IN)
OUTPUTS:
Aerosol: CRTM Aerosol object array containing the Aerosol data.
UNITS: N/A
TYPE: CRTM_Aerosol_type

DIMENSION: Rank-1
ATTRIBUTES: INTENT(OUT)

OPTIONAL INPUTS:
Quiet: Set this logical argument to suppress INFORMATION
messages being printed to stdout
If == .FALSE., INFORMATION messages are OUTPUT [DEFAULT].
== .TRUE., INFORMATION messages are SUPPRESSED.
If not specified, default is .FALSE.
UNITS: N/A

117

No_Close:

OPTIONAL OUTPUTS:
n_Aerosols:

FUNCTION RESULT:

Error_Status:

TYPE: LOGICAL
DIMENSION: Scalar
ATTRIBUTES: INTENT(IN), OPTIONAL

Set this logical argument to NOT close the file upon exit.

If == .FALSE., the input file is closed upon exit [DEFAULT]
== .TRUE., the input file is NOT closed upon exit.

If not specified, default is .FALSE.

UNITS: N/A

TYPE: LOGICAL

DIMENSION: Scalar

ATTRIBUTES: INTENT(IN), OPTIONAL

The actual number of aerosol profiles read in.
UNITS: N/A

TYPE: INTEGER

DIMENSION: Scalar

ATTRIBUTES: OPTIONAL, INTENT(OUT)

The return value is an integer defining the error status.
The error codes are defined in the Message_Handler module.
If == SUCCESS, the file read was successful

== FAILURE, an unrecoverable error occurred.
UNITS: N/A
TYPE: INTEGER
DIMENSION: Scalar

A.4.11 CRTM Aerosol_SetLayers interface

NAME:

CRTM_Aerosol_SetLayers

PURPOSE:

Elemental subroutine to set the working number of layers to use
in a CRTM Aerosol object.

CALLING SEQUENCE:

CALL CRTM_Aerosol_SetLayers(Aerosol, n_Layers)

OBJECT:
Aerosol:

INPUTS:

CRTM Aerosol object which is to have its working number
of layers updated.

UNITS: N/A

TYPE: CRTM_Aerosol_type

DIMENSION: Scalar or any rank

ATTRIBUTES: INTENT(IN OUT)

118

n_Layers: The value to set the n_Layers component of the
Aerosol object.
UNITS: N/A
TYPE: CRTM_Aerosol_type
DIMENSION: Conformable with the Aerosol object argument
ATTRIBUTES: INTENT(IN)

COMMENTS :
- The object is zeroed upon output.

- If n_Layers <= Aerosol/Max_Layers, then only the dimension value
of the object is changed.

- If n_Layers > AerosolMax_Layers, then the object is reallocated
to the required number of layers.

A.4.12 CRTM_Aerosol_WriteFile interface

NAME:
CRTM_Aerosol_WriteFile

PURPOSE:
Function to write CRTM Aerosol object files.

CALLING SEQUENCE:
Error_Status = CRTM_Aerosol_WriteFile(Filename , &
Aerosol , &
&
)

Quiet Quiet s
No_Close No_Close

INPUTS:
Filename: Character string specifying the name of the
Aerosol format data file to write.
UNITS: N/A
TYPE: CHARACTER (%)
DIMENSION: Scalar
ATTRIBUTES: INTENT(IN)

Aerosol: CRTM Aerosol object array containing the Aerosol data.
UNITS: N/A
TYPE: CRTM_Aerosol_type
DIMENSION: Rank-1
ATTRIBUTES: INTENT(IN)

OPTIONAL INPUTS:
Quiet: Set this logical argument to suppress INFORMATION
messages being printed to stdout
If == .FALSE., INFORMATION messages are OUTPUT [DEFAULT].
== .TRUE., INFORMATION messages are SUPPRESSED.
If not specified, default is .FALSE.

119

UNITS: N/A

TYPE: LOGICAL

DIMENSION: Scalar

ATTRIBUTES: INTENT(IN), OPTIONAL

No_Close: Set this logical argument to NOT close the file upon exit.
If == .FALSE., the input file is closed upon exit [DEFAULT]
== .TRUE., the input file is NOT closed upon exit.
If not specified, default is .FALSE.
UNITS: N/A
TYPE: LOGICAL
DIMENSION: Scalar
ATTRIBUTES: INTENT(IN), OPTIONAL

FUNCTION RESULT:

Error_Status: The return value is an integer defining the error status.
The error codes are defined in the Message_Handler module.
If == SUCCESS, the file write was successful

== FAILURE, an unrecoverable error occurred.

UNITS: N/A
TYPE: INTEGER
DIMENSION: Scalar

SIDE EFFECTS:
- If the output file already exists, it is overwritten.
- If an error occurs during *writing*, the output file is deleted before
returning to the calling routine.

A.4.13 CRTM Aerosol_Zero interface

NAME:
CRTM_Aerosol_Zero

PURPOSE:
Elemental subroutine to zero out the data arrays in a CRTM Aerosol object.

CALLING SEQUENCE:
CALL CRTM_Aerosol_Zero(Aerosol)

0BJECTS:
Aerosol: CRTM Aerosol object in which the data arrays are

to be zeroed out.
UNITS: N/A
TYPE: CRTM_Aerosol_type
DIMENSION: Scalar or any rank
ATTRIBUTES: INTENT(IN OUT)

COMMENTS:

- The dimension components of the structure are *NOT* set to zero.
- The Aerosol type component is *NOT* reset.

120

121

A.5 Surface Structure

TYPE :: CRTM_Surface_type
! Gross type of surface determined by coverage
REAL(fp) :: Land_Coverage = ZERO

REAL(fp) :: Water_Coverage = ZERO

REAL(fp) :: Snow_Coverage = ZERO

REAL(fp) :: Ice_Coverage = ZERO

! Land surface type data

INTEGER :: Land_Type = DEFAULT_LAND_TYPE
REAL(fp) :: Land_Temperature = DEFAULT_LAND_TEMPERATURE

REAL(fp) :: Soil_Moisture_Content = DEFAULT_SOIL_MOISTURE_CONTENT
REAL(fp) :: Canopy_Water_Content = DEFAULT_CANOPY_WATER_CONTENT

REAL(fp) :: Vegetation_Fraction = DEFAULT_VEGETATION_FRACTION
REAL(fp) :: Soil_Temperature = DEFAULT_SOIL_TEMPERATURE
REAL(fp) :: LAI = DEFAULT_LAI

INTEGER :: Soil_Type = DEFAULT_SOIL_TYPE
INTEGER :: Vegetation_Type = DEFAULT_VEGETATION_TYPE
! Water type data

INTEGER :: Water_Type = DEFAULT_WATER_TYPE

REAL(fp) :: Water_Temperature = DEFAULT_WATER_TEMPERATURE
REAL(fp) :: Wind_Speed = DEFAULT_WIND_SPEED

REAL(fp) :: Wind_Direction = DEFAULT_WIND_DIRECTION
REAL(fp) :: Salinity = DEFAULT_SALINITY

! Snow surface type data

INTEGER :: Snow_Type = DEFAULT_SNOW_TYPE

DEFAULT_SNOW_TEMPERATURE
DEFAULT_SNOW_DEPTH
DEFAULT_SNOW_DENSITY
DEFAULT_SNOW_GRAIN_SIZE

REAL(fp) :: Snow_Temperature
REAL(fp) :: Snow_Depth
REAL(fp) :: Snow_Density
REAL(fp) :: Snow_Grain_Size
! Ice surface type data
INTEGER :: Ice_Type
REAL(fp) :: Ice_Temperature
REAL(fp) :: Ice_Thickness
REAL(fp) :: Ice_Demnsity DEFAULT_ICE_DENSITY
REAL(fp) :: Ice_Roughness DEFAULT_ICE_ROUGHNESS
! SensorData containing channel brightness temperatures
TYPE(CRTM_SensorData_type) :: SensorData

END TYPE CRTM_Surface_type

DEFAULT_ICE_TYPE
DEFAULT_ICE_TEMPERATURE
DEFAULT_ICE_THICKNESS

Figure A.5: CRTM_Surface_type structure definition.

122

A.5.1 CRTM_Surface_Associated interface

NAME:
CRTM_Surface_Associated

PURPOSE:
Elemental function to test the status of the allocatable components
of a CRTM Surface object.

CALLING SEQUENCE:
Status = CRTM_Surface_Associated(Sfc)

OBJECTS:
Sfc: Surface structure which is to have its member’s
status tested.
UNITS: N/A
TYPE: CRTM_Surface_type

DIMENSION: Scalar or any rank
ATTRIBUTES: INTENT(IN)

FUNCTION RESULT:

Status: The return value is a logical value indicating the
status of the Surface members.
.TRUE. - if the array components are allocated.
.FALSE. - if the array components are not allocated.
UNITS: N/A
TYPE: LOGICAL

DIMENSION: Same as input

A.5.2 CRTM_Surface_Compare interface

NAME:
CRTM_Surface_Compare

PURPOSE:
Elemental function to compare two CRTM_Surface objects to within
a user specified number of significant figures.

CALLING SEQUENCE:
is_comparable = CRTM_Surface_Compare(x, y, n_SigFig=n_SigFig)

0BJECTS:
X, y: Two CRTM Surface objects to be compared.
UNITS: N/A
TYPE: CRTM_Surface_type

DIMENSION: Scalar or any rank
ATTRIBUTES: INTENT(IN)

OPTIONAL INPUTS:
n_SigFig: Number of significant figure to compare floating point

123

components.

UNITS: N/A

TYPE: INTEGER

DIMENSION: Scalar or same as input
ATTRIBUTES: INTENT(IN), OPTIONAL

FUNCTION RESULT:

is_equal: Logical value indicating whether the inputs are equal.
UNITS: N/A
TYPE: LOGICAL

DIMENSION: Same as inputs.

A.5.3 CRTM_Surface_CoverageType interface

NAME:
CRTM_Surface_CoverageType

PURPOSE:
Elemental function to return the gross surface type based on coverage.

CALLING SEQUENCE:
type = CRTM_Surface_CoverageType(sfc)

INPUTS:
Sfc: CRTM Surface object for which the gross surface type is required.
UNITS: N/A
TYPE: CRTM_Surface_type
DIMENSION: Scalar or any rank
ATTRIBUTES: INTENT(IN)
FUNCTION:
type: Surface type indicator for the passed CRTM Surface object.
UNITS: N/A
TYPE: INTEGER
DIMENSION: Same as input
COMMENTS:

For a scalar Surface object, this function result can be used to
determine what gross surface types are included by using it to
index the SURFACE_TYPE_NAME parameter arrays, e.g.

WRITE(*,*) SURFACE_TYPE_NAME(CRTM_Surface_CoverageType(sfc))

A.5.4 CRTM_Surface_Create interface

NAME:
CRTM_Surface_Create

124

PURPOSE:
Elemental subroutine to create an instance of the CRTM Surface object.

CALLING SEQUENCE:
CALL CRTM_Surface_Create(Sfc , &
n_Channels)

OBJECTS:
Sfc: Surface structure.
UNITS: N/A
TYPE: CRTM_Surface_type

DIMENSION: Scalar or any rank
ATTRIBUTES: INTENT(OUT)

INPUT ARGUMENTS:
n_Channels: Number of channels dimension of SensorData

substructure
** Note: Can be = 0 (i.e. no sensor data). *x*
UNITS: N/A
TYPE: INTEGER
DIMENSION: Same as Surface object
ATTRIBUTES: INTENT(IN)

A.5.5 CRTM Surface_DefineVersion interface

NAME:
CRTM_Surface_DefineVersion

PURPOSE:
Subroutine to return the module version information.

CALLING SEQUENCE:
CALL CRTM_Surface_DefineVersion(Id)

OUTPUT ARGUMENTS:
Id: Character string containing the version Id information
for the module.
UNITS: N/A
TYPE: CHARACTER (%)
DIMENSION: Scalar
ATTRIBUTES: INTENT(OUT)

A.5.6 CRTM_Surface Destroy interface

NAME:
CRTM_Surface_Destroy

125

PURPOSE:
Elemental subroutine to re-initialize CRTM Surface objects.

CALLING SEQUENCE:
CALL CRTM_Surface_Destroy(Sfc)

OBJECTS:
Sfc: Re-initialized Surface structure.
UNITS: N/A
TYPE: CRTM_Surface_type

DIMENSION: Scalar or any rank
ATTRIBUTES: INTENT(QOUT)

A.5.7 CRTM_Surface_InquireFile interface

NAME:
CRTM_Surface_InquireFile

PURPOSE:
Function to inquire CRTM Surface object files.

CALLING SEQUENCE:
Error_Status = CRTM_Surface_InquireFile(Filename , &
n_Channels = n_Channels, &
n_Profiles = n_Profiles)

INPUTS:
Filename: Character string specifying the name of a
CRTM Surface data file to read.
UNITS: N/A
TYPE: CHARACTER (%)
DIMENSION: Scalar
ATTRIBUTES: INTENT(IN)

OPTIONAL OUTPUTS:

n_Channels: The number of spectral channels for which there is
data in the file. Note that this value will always
be 0 for a profile-only dataset—- it only has meaning
for K-matrix data.
UNITS: N/A
TYPE: INTEGER
DIMENSION: Scalar
ATTRIBUTES: OPTIONAL, INTENT(QUT)

n_Profiles: The number of profiles in the data file.
UNITS: N/A
TYPE: INTEGER

DIMENSION: Scalar
ATTRIBUTES: OPTIONAL, INTENT(OUT)

126

FUNCTION RESULT:

Error_Status: The return value is an integer defining the error status.
The error codes are defined in the Message_Handler module.
If == SUCCESS, the file inquire was successful

== FAILURE, an unrecoverable error occurred.

UNITS: N/A
TYPE: INTEGER
DIMENSION: Scalar

A.5.8 CRTM_Surface_Inspect interface

NAME:
CRTM_Surface_Inspect

PURPOSE:
Subroutine to print the contents of a CRTM Surface object to stdout.

CALLING SEQUENCE:
CALL CRTM_Surface_Inspect(Sfc)

INPUTS:
Sfc: CRTM Surface object to display.
UNITS: N/A
TYPE: CRTM_Surface_type

DIMENSION: Scalar
ATTRIBUTES: INTENT(IN)

A.5.9 CRTM_Surface_IsCoverageValid interface

NAME:
CRTM_Surface_IsCoverageValid

PURPOSE:
Function to determine if the coverage fractions are valid
for a CRTM Surface object.

CALLING SEQUENCE:
result = CRTM_Surface_IsCoverageValid(Sfc)

0BJECTS:
Sfc: CRTM Surface object which is to have its
coverage fractions checked.
UNITS: N/A
TYPE: CRTM_Surface_type

DIMENSION: Scalar

127

ATTRIBUTES: INTENT(IN)

FUNCTION RESULT:
result: Logical variable indicating whether or not the input
passed the check.
If == .FALSE., Surface object coverage fractions are invalid.
== .TRUE., Surface object coverage fractions are valid.
UNITS: N/A
TYPE: LOGICAL
DIMENSION: Scalar

A.5.10 CRTM_Surface_IsValid interface
NAME:
CRTM_Surface_IsValid
PURPOSE:
Non-pure function to perform some simple validity checks on a
CRTM Surface object.

If invalid data is found, a message is printed to stdout.

CALLING SEQUENCE:
result = CRTM_Surface_IsValid(Sfc)

or

IF (CRTM_Surface_IsValid(Sfc)) THEN....

0BJECTS:
Sfc: CRTM Surface object which is to have its
contents checked.
UNITS: N/A
TYPE: CRTM_Surface_type

DIMENSION: Scalar
ATTRIBUTES: INTENT(IN)

FUNCTION RESULT:

result: Logical variable indicating whether or not the input
passed the check.
If == .FALSE., Surface object is unused or contains

invalid data.
== .TRUE., Surface object can be used in CRTM.

UNITS: N/A
TYPE: LOGICAL
DIMENSION: Scalar

128

A.5.11 CRTM_Surface_ReadFile interface
NAME :
CRTM_Surface_ReadFile

PURPOSE:
Function to read CRTM Surface object files.

CALLING SEQUENCE:

Error_Status = CRTM_Surface_ReadFile(Filename , &
Surface , &
Quiet = Quiet , &
n_Channels = n_Channels, &
n_Profiles = n_Profiles)
INPUTS:
Filename: Character string specifying the name of an
Surface format data file to read.
UNITS: N/A
TYPE: CHARACTER (%)
DIMENSION: Scalar
ATTRIBUTES: INTENT(IN)
OUTPUTS:
Surface: CRTM Surface object array containing the Surface

data. Note the following meanings attributed to the

dimensions of the object array:

Rank-1: M profiles.
Only profile data are to be read in. The file
does not contain channel information. The
dimension of the structure is understood to
be the PROFILE dimension.

Rank-2: L channels x M profiles
Channel and profile data are to be read in.
The file contains both channel and profile
information. The first dimension of the
structure is the CHANNEL dimension, the second
is the PROFILE dimension. This is to allow
K-matrix structures to be read in with the
same function.

UNITS: N/A

TYPE: CRTM_Surface_type

DIMENSION: Rank-1 (M) or Rank-2 (L x M)

ATTRIBUTES: INTENT(OUT)

OPTIONAL INPUTS:
Quiet: Set this logical argument to suppress INFORMATION
messages being printed to stdout
If == .FALSE., INFORMATION messages are OUTPUT [DEFAULT].
== .TRUE., INFORMATION messages are SUPPRESSED.
If not specified, default is .FALSE.
UNITS: N/A
TYPE: LOGICAL

129

DIMENSION: Scalar
ATTRIBUTES: INTENT(IN), OPTIONAL

OPTIONAL OUTPUTS:

n_Channels: The number of channels for which data was read. Note that
this value will always be O for a profile-only dataset--
it only has meaning for K-matrix data.
UNITS: N/A
TYPE: INTEGER
DIMENSION: Scalar
ATTRIBUTES: OPTIONAL, INTENT(OUT)

n_Profiles: The number of profiles for which data was read.
UNITS: N/A
TYPE: INTEGER

DIMENSION: Scalar
ATTRIBUTES: OPTIONAL, INTENT(OUT)

FUNCTION RESULT:

Error_Status: The return value is an integer defining the error status.
The error codes are defined in the Message_Handler module.
If == SUCCESS, the file read was successful

== FAILURE, an unrecoverable error occurred.

UNITS: N/A
TYPE: INTEGER
DIMENSION: Scalar

A.5.12 CRTM Surface_WriteFile interface

NAME:
CRTM_Surface_WriteFile

PURPOSE:
Function to write CRTM Surface object files.

CALLING SEQUENCE:
Error_Status = CRTM_Surface_WriteFile(Filename , &
Surface , &
Quiet = Quiet)

INPUTS:

Filename: Character string specifying the name of the
Surface format data file to write.
UNITS: N/A
TYPE: CHARACTER (%)
DIMENSION: Scalar
ATTRIBUTES: INTENT(IN)

Surface: CRTM Surface object array containing the Surface

130

data. Note the following meanings attributed to the

dimensions of the Surface array:

Rank-1: M profiles.
Only profile data are to be read in. The file
does not contain channel information. The
dimension of the array is understood to
be the PROFILE dimension.

Rank-2: L channels x M profiles
Channel and profile data are to be read in.
The file contains both channel and profile
information. The first dimension of the
array is the CHANNEL dimension, the second
is the PROFILE dimension. This is to allow
K-matrix structures to be read in with the
same function.

UNITS: N/A

TYPE: CRTM_Surface_type

DIMENSION: Rank-1 (M) or Rank-2 (L x M)

ATTRIBUTES: INTENT(IN)

OPTIONAL INPUTS:
Quiet: Set this logical argument to suppress INFORMATION
messages being printed to stdout
If == .FALSE., INFORMATION messages are OUTPUT [DEFAULT].
== .TRUE., INFORMATION messages are SUPPRESSED.
If not specified, default is .FALSE.
UNITS: N/A
TYPE: LOGICAL
DIMENSION: Scalar
ATTRIBUTES: INTENT(IN), OPTIONAL

FUNCTION RESULT:

Error_Status: The return value is an integer defining the error status.
The error codes are defined in the Message_Handler module.
If == SUCCESS, the file write was successful

== FAILURE, an unrecoverable error occurred.

UNITS: N/A
TYPE: INTEGER
DIMENSION: Scalar

SIDE EFFECTS:
- If the output file already exists, it is overwritten.

- If an error occurs during *writing#*, the output file is deleted before
returning to the calling routine.

A.5.13 CRTM Surface_Zero interface

NAME:
CRTM_Surface_Zero

131

PURPOSE:
Elemental subroutine to zero out the data arrays
in a CRTM Surface object.

CALLING SEQUENCE:
CALL CRTM_Surface_Zero(Sfc)

OUTPUT ARGUMENTS:
Sfc: CRTM Surface structure in which the data arrays
are to be zeroed out.
UNITS: N/A
TYPE: CRTM_Surface_type
DIMENSION: Scalar or any rank
ATTRIBUTES: INTENT(IN OUT)

COMMENTS:

- The various surface type indicator flags are
NOT reset in this routine.

132

A.6 SensorData Structure

TYPE :: CRTM_SensorData_type
! Allocation indicator
LOGICAL :: Is_Allocated = .FALSE.
! Dimension values
INTEGER :: n_Channels = 0 ! L
! The data sensor IDs
CHARACTER (STRLEN) :: Sensor_Id =27
INTEGER :: WMO_Satellite_ID INVALID_WMO_SATELLITE_ID
INTEGER :: WMO_Sensor_ID INVALID_WMO_SENSOR_ID
! The sensor channels and brightness temperatures
INTEGER , ALLOCATABLE :: Sensor_Channel(:) I L
REAL(fp), ALLOCATABLE :: Tb(:) 'L
END TYPE CRTM_SensorData_type

Figure A.6: CRTM_SensorData_type structure definition.

133

A.6.1 CRTM_SensorData_Associated interface

NAME:
CRTM_SensorData_Associated

PURPOSE:
Elemental function to test the status of the allocatable components
of a CRTM SensorData object.

CALLING SEQUENCE:
Status = CRTM_SensorData_Associated(SensorData)

OBJECTS:
SensorData: SensorData structure which is to have its member’s
status tested.
UNITS: N/A
TYPE: CRTM_SensorData_type
DIMENSION: Scalar or any rank
ATTRIBUTES: INTENT(IN)

FUNCTION RESULT:

Status: The return value is a logical value indicating the
status of the SensorData members.
.TRUE. - if the array components are allocated.
.FALSE. - if the array components are not allocated.
UNITS: N/A
TYPE: LOGICAL

DIMENSION: Same as input SensorData argument

A.6.2 CRTM_SensorData_Compare interface

NAME:
CRTM_SensorData_Compare

PURPOSE:
Elemental function to compare two CRTM_SensorData objects to within
a user specified number of significant figures.

CALLING SEQUENCE:
is_comparable = CRTM_SensorData_Compare(x, y, n_SigFig=n_SigFig)

0BJECTS:
X, y: Two CRTM SensorData objects to be compared.
UNITS: N/A
TYPE: CRTM_SensorData_type

DIMENSION: Scalar or any rank
ATTRIBUTES: INTENT(IN)

OPTIONAL INPUTS:
n_SigFig: Number of significant figure to compare floating point

134

components.

UNITS: N/A

TYPE: INTEGER

DIMENSION: Scalar or same as input
ATTRIBUTES: INTENT(IN), OPTIONAL

FUNCTION RESULT:

is_equal: Logical value indicating whether the inputs are equal.
UNITS: N/A
TYPE: LOGICAL

DIMENSION: Same as inputs.

A.6.3 CRTM_SensorData_Create interface

NAME:
CRTM_SensorData_Create

PURPOSE:
Elemental subroutine to create an instance of the CRTM SensorData object.

CALLING SEQUENCE:
CALL CRTM_SensorData_Create(SensorData, n_Channels)

OBJECTS:
SensorData: SensorData structure.
UNITS: N/A
TYPE: CRTM_SensorData_type
DIMENSION: Scalar or any rank
ATTRIBUTES: INTENT(OUT)
INPUTS:
n_Channels: Number of sensor channels.
Must be > 0.
UNITS: N/A
TYPE: INTEGER

DIMENSION: Same as SensorData object
ATTRIBUTES: INTENT(IN)

A.6.4 CRTM_SensorData DefineVersion interface
NAME:
CRTM_SensorData_DefineVersion

PURPOSE:
Subroutine to return the module version information.

CALLING SEQUENCE:

135

CALL CRTM_SensorData_DefineVersion(Id)

OUTPUT ARGUMENTS:
Id: Character string containing the version Id information
for the module.
UNITS: N/A
TYPE: CHARACTER (%)
DIMENSION: Scalar
ATTRIBUTES: INTENT(OUT)

A.6.5 CRTM_SensorData_Destroy interface

NAME:
CRTM_SensorData_Destroy

PURPOSE:
Elemental subroutine to re-initialize CRTM SensorData objects.

CALLING SEQUENCE:
CALL CRTM_SensorData_Destroy(SensorData)

OBJECTS:
SensorData: Re-initialized SensorData structure.
UNITS: N/A
TYPE: CRTM_SensorData_type

DIMENSION: Scalar OR any rank
ATTRIBUTES: INTENT(OUT)

A.6.6 CRTM_SensorData_InquireFile interface

NAME:
CRTM_SensorData_InquireFile

PURPOSE:
Function to inquire CRTM SensorData object files.

CALLING SEQUENCE:
Error_Status = CRTM_SensorData_InquireFile(Filename , &
n_DataSets = n_DataSets)

INPUTS:
Filename: Character string specifying the name of a
CRTM SensorData data file to read.
UNITS: N/A
TYPE: CHARACTER (%)
DIMENSION: Scalar

136

ATTRIBUTES: INTENT(IN)

OPTIONAL OUTPUTS:

n_DataSets: The number of datasets in the file.
UNITS: N/A
TYPE: INTEGER

DIMENSION: Scalar
ATTRIBUTES: OPTIONAL, INTENT(OUT)

FUNCTION RESULT:

Error_Status: The return value is an integer defining the error status.
The error codes are defined in the Message_Handler module.
If == SUCCESS, the file inquire was successful

== FAILURE, an unrecoverable error occurred.

UNITS: N/A
TYPE: INTEGER
DIMENSION: Scalar

A.6.7 CRTM_SensorData_Inspect interface

NAME:
CRTM_SensorData_Inspect

PURPOSE:
Subroutine to print the contents of a CRTM SensorData object to stdout.

CALLING SEQUENCE:
CALL CRTM_SensorData_Inspect(SensorData)

INPUTS:
SensorData: CRTM SensorData object to display.
UNITS: N/A
TYPE: CRTM_SensorData_type

DIMENSION: Scalar
ATTRIBUTES: INTENT(IN)

A.6.8 CRTM_SensorData_IsValid interface
NAME:
CRTM_SensorData_IsValid
PURPOSE:
Non-pure function to perform some simple validity checks on a

CRTM SensorData object.

If invalid data is found, a message is printed to stdout.

137

CALLING SEQUENCE:
result = CRTM_SensorData_IsValid(SensorData)

or

IF (CRTM_SensorData_IsValid(SensorData)) THEN....

0BJECTS:
SensorData: CRTM SensorData object which is to have its
contents checked.
UNITS: N/A
TYPE: CRTM_SensorData_type

DIMENSION: Scalar
ATTRIBUTES: INTENT(IN)

FUNCTION RESULT:

result: Logical variable indicating whether or not the input
passed the check.
If == .FALSE., SensorData object is unused or contains

invalid data.
== .TRUE., SensorData object can be used in CRTM.

UNITS: N/A
TYPE: LOGICAL
DIMENSION: Scalar

A.6.9 CRTM_SensorData_ReadFile interface
NAME:
CRTM_SensorData_ReadFile

PURPOSE:
Function to read CRTM SensorData object files.

CALLING SEQUENCE:

Error_Status = CRTM_SensorData_ReadFile(Filename , &
SensorData , &
Quiet = Quiet , &
No_Close = No_Close , &
n_DataSets = n_DataSets)
INPUTS:
Filename: Character string specifying the name of a
SensorData format data file to read.
UNITS: N/A
TYPE: CHARACTER (%)
DIMENSION: Scalar
ATTRIBUTES: INTENT(IN)
OUTPUTS:

138

SensorData: CRTM SensorData object array containing the sensor data.
UNITS: N/A
TYPE: CRTM_SensorData_type
DIMENSION: Rank-1
ATTRIBUTES: INTENT(QOUT)

OPTIONAL INPUTS:
Quiet: Set this logical argument to suppress INFORMATION
messages being printed to stdout
If == .FALSE., INFORMATION messages are OUTPUT [DEFAULT].
== .TRUE., INFORMATION messages are SUPPRESSED.
If not specified, default is .FALSE.
UNITS: N/A
TYPE: LOGICAL
DIMENSION: Scalar
ATTRIBUTES: INTENT(IN), OPTIONAL

No_Close: Set this logical argument to NOT close the file upon exit.
If == .FALSE., the input file is closed upon exit [DEFAULT]
== .TRUE., the input file is NOT closed upon exit.
If not specified, default is .FALSE.
UNITS: N/A
TYPE: LOGICAL
DIMENSION: Scalar
ATTRIBUTES: INTENT(IN), OPTIONAL

OPTIONAL OUTPUTS:

n_DataSets: The actual number of datasets read in.
UNITS: N/A
TYPE: INTEGER

DIMENSION: Scalar
ATTRIBUTES: OPTIONAL, INTENT(OUT)

FUNCTION RESULT:

Error_Status: The return value is an integer defining the error status.
The error codes are defined in the Message_Handler module.
If == SUCCESS, the file read was successful

== FAILURE, an unrecoverable error occurred.

UNITS: N/A
TYPE: INTEGER
DIMENSION: Scalar

A.6.10 CRTM_SensorData_WriteFile interface

NAME:
CRTM_SensorData_WriteFile

PURPOSE:
Function to write CRTM SensorData object files.

139

CALLING SEQUENCE:
Error_Status = CRTM_SensorData_WriteFile(Filename , &
SensorData , &
&
)

Quiet Quiet ,
No_Close No_Close

INPUTS:
Filename: Character string specifying the name of the
SensorData format data file to write.
UNITS: N/A
TYPE: CHARACTER (%)
DIMENSION: Scalar
ATTRIBUTES: INTENT(IN)

SensorData: CRTM SensorData object array containing the datasets.
UNITS: N/A
TYPE: CRTM_SensorData_type
DIMENSION: Rank-1
ATTRIBUTES: INTENT(IN)

OPTIONAL INPUTS:
Quiet: Set this logical argument to suppress INFORMATION
messages being printed to stdout
If == .FALSE., INFORMATION messages are OUTPUT [DEFAULT].
== .TRUE., INFORMATION messages are SUPPRESSED.
If not specified, default is .FALSE.
UNITS: N/A
TYPE: LOGICAL
DIMENSION: Scalar
ATTRIBUTES: INTENT(IN), OPTIONAL

No_Close: Set this logical argument to NOT close the file upon exit.
If == .FALSE., the input file is closed upon exit [DEFAULT]
== .TRUE., the input file is NOT closed upon exit.
If not specified, default is .FALSE.
UNITS: N/A
TYPE: LOGICAL
DIMENSION: Scalar
ATTRIBUTES: INTENT(IN), OPTIONAL

FUNCTION RESULT:

Error_Status: The return value is an integer defining the error status.
The error codes are defined in the Message_Handler module.
If == SUCCESS, the file write was successful

== FAILURE, an unrecoverable error occurred.

UNITS: N/A
TYPE: INTEGER
DIMENSION: Scalar

SIDE EFFECTS:
- If the output file already exists, it is overwritten.
- If an error occurs during *writing*, the output file is deleted before
returning to the calling routine.

140

A.6.11 CRTM_SensorData_Zero interface

NAME:
CRTM_SensorData_Zero

PURPOSE:
Elemental subroutine to zero out the data arrays in a
CRTM SensorData object.

CALLING SEQUENCE:
CALL CRTM_SensorData_Zero(SensorData)

0BJECTS:
SensorData: CRTM SensorData structure in which the data arrays are

to be zeroed out.
UNITS: N/A
TYPE: CRTM_SensorData_type
DIMENSION: Scalar or any rank
ATTRIBUTES: INTENT(IN OUT)

COMMENTS :

- The dimension components of the structure are *NOT* set to zero.
- The SensorData sensor id and channel components are *NOT* reset.

141

A.7 Geometry Structure

TYPE :: CRTM_Geometry_type
! Allocation indicator

LOGICAL :: Is_Allocated = .FALSE.

! Field of view index (1-nFQV)

INTEGER :: iFOV = 0O

! Earth location

REAL(fp) :: Longitude = ZERO

REAL(fp) :: Latitude = ZERO

REAL(fp) :: Surface_Altitude = ZERO

! Sensor angle information

REAL(fp) :: Sensor_Scan_Angle = ZERO

REAL(fp) :: Sensor_Zenith_Angle = ZERO

REAL(fp) :: Sensor_Azimuth_Angle = 999.9_fp ! Invalid marker
! Source angle information

REAL(fp) :: Source_Zenith_Angle = 100.0_fp ! Below horizon
REAL(fp) :: Source_Azimuth_Angle = ZERO

! Flux angle information

REAL(fp) :: Flux_Zenith_Angle = DIFFUSIVITY_ANGLE

! Date for geometry calculations

INTEGER :: Year = 2001

INTEGER :: Month = 1

INTEGER :: Day =1

END TYPE CRTM_Geometry_type

Figure A.7: CRTM_Geometry_type structure definition.

142

A.7.1 CRTM_Geometry Associated interface

NAME:
CRTM_Geometry_Associated

PURPOSE:
Elemental function to test the status of the allocatable components
of a CRTM Geometry object.

CALLING SEQUENCE:
Status = CRTM_Geometry_Associated(geo)

0BJECTS:
geo: Geometry structure which is to have its member’s
status tested.
UNITS: N/A
TYPE: CRTM_Geometry_type

DIMENSION: Scalar or any rank
ATTRIBUTES: INTENT(IN)

FUNCTION RESULT:

Status: The return value is a logical value indicating the
status of the Geometry members.
.TRUE. - if the array components are allocated.
.FALSE. - if the array components are not allocated.
UNITS: N/A
TYPE: LOGICAL

DIMENSION: Same as input Geometry argument

A.7.2 CRTM_Geometry_Compare interface

NAME:
CRTM_Geometry_Compare

PURPOSE:
Elemental function to compare two CRTM_Geometry objects to within
a user specified number of significant figures.

CALLING SEQUENCE:
is_comparable = CRTM_Geometry_Compare(x, y, n_SigFig=n_SigFig)

0BJECTS:
X, y: Two CRTM Geometry objects to be compared.
UNITS: N/A
TYPE: CRTM_Geometry_type

DIMENSION: Scalar or any rank
ATTRIBUTES: INTENT(IN)

OPTIONAL INPUTS:
n_SigFig: Number of significant figure to compare floating point

143

components.

UNITS: N/A

TYPE: INTEGER

DIMENSION: Scalar or same as input
ATTRIBUTES: INTENT(IN), OPTIONAL

FUNCTION RESULT:

is_equal: Logical value indicating whether the inputs are equal.
UNITS: N/A
TYPE: LOGICAL

DIMENSION: Same as inputs.

A.7.3 CRTM_Geometry Create interface

NAME:
CRTM_Geometry_Create

PURPOSE:
Elemental subroutine to create an instance of the CRTM Geometry object.

CALLING SEQUENCE:
CALL CRTM_Geometry_Create(geo)

0BJECTS:
geo: Geometry structure.
UNITS: N/A
TYPE: CRTM_Geometry_type

DIMENSION: Scalar or any rank
ATTRIBUTES: INTENT(OUT)

A.7.4 CRTM_Geometry DefineVersion interface

NAME:
CRTM_Geometry_DefineVersion

PURPOSE:
Subroutine to return the module version information.

CALLING SEQUENCE:
CALL CRTM_Geometry_DefineVersion(Id)

OUTPUT ARGUMENTS:
Id: Character string containing the version Id information
for the module.
UNITS: N/A
TYPE: CHARACTER (%)
DIMENSION: Scalar

144

ATTRIBUTES: INTENT(OUT)

A.7.5 CRTM_Geometry Destroy interface

NAME:
CRTM_Geometry_Destroy

PURPOSE:
Elemental subroutine to re-initialize CRTM Geometry objects.

CALLING SEQUENCE:
CALL CRTM_Geometry_Destroy(geo)

0BJECTS:
geo: Re-initialized Geometry structure.
UNITS: N/A
TYPE: CRTM_Geometry_type

DIMENSION: Scalar or any rank
ATTRIBUTES: INTENT(OUT)

A.7.6 CRTM_Geometry_GetValue interface

NAME:
CRTM_Geometry_GetValue

PURPOSE:
Elemental subroutine to get the values of CRTM Geometry
object components.

CALLING SEQUENCE:
CALL CRTM_Geometry_GetValue(geo, &

iFov = iFOV s
Longitude = Longitude ,
Latitude = Latitude s
Surface_Altitude = Surface_Altitude ,
Sensor_Scan_Angle = Sensor_Scan_Angle ,

Sensor_Zenith_Angle = Sensor_Zenith_Angle ,
Sensor_Azimuth_Angle = Sensor_Azimuth_Angle,

Source_Zenith_Angle = Source_Zenith_Angle ,
Source_Azimuth_Angle = Source_Azimuth_Angle,
Flux_Zenith_Angle = Flux_Zenith_Angle s
Year = Year s
Month = Month s
Day = Day

OBJECTS:

145

R RR R

geo:

OPTIONAL OUTPUTS:
iFOV:

Longitude:

Latitude:

Surface_Altitude:

Sensor_Scan_Angle:

Sensor_Zenith_Angle:

Sensor_Azimuth_Angle:

Geometry object from which component values
are to be retrieved.

UNITS: N/A

TYPE: CRTM_Geometry_type
DIMENSION: Scalar or any rank
ATTRIBUTES: INTENT(IN QOUT)

Sensor field-of-view index.

UNITS: N/A

TYPE: INTEGER

DIMENSION: Scalar or same as geo input
ATTRIBUTES: INTENT(OUT), OPTIONAL

Earth longitude

UNITS: degrees East (0->360)
TYPE: REAL (fp)
DIMENSION: Scalar or same as geo input

ATTRIBUTES: INTENT(OUT), OPTIONAL

Earth latitude.

UNITS: degrees North (-90->+90)
TYPE: REAL (fp)

DIMENSION: Scalar or same as geo input
ATTRIBUTES: INTENT(OUT), OPTIONAL

Altitude of the Earth’s surface at the specifed
lon/lat location.

UNITS: metres (m)

TYPE: REAL (fp)

DIMENSION: Scalar or same as geo input
ATTRIBUTES: INTENT(OUT), OPTIONAL

The sensor scan angle from nadir.

UNITS: degrees

TYPE: REAL (fp)

DIMENSION: Scalar or same as geo input
ATTRIBUTES: INTENT(OUT), OPTIONAL

The zenith angle from the field-of-view
to the semnsor.

UNITS: degrees

TYPE: REAL (fp)

DIMENSION: Scalar or same as geo input
ATTRIBUTES: INTENT(OUT), OPTIONAL

The azimuth angle subtended by the horizontal
projection of a direct line from the satellite
to the FOV and the North-South axis measured
clockwise from North.

UNITS: degrees from North (0->360)
TYPE: REAL (fp)

DIMENSION: Scalar or same as geo input
ATTRIBUTES: INTENT(OUT), OPTIONAL

146

Source_Zenith_Angle:

Source_Azimuth_Angle:

Flux_Zenith_Angle:

Year:

Month:

Day:

The zenith angle from the field-of-view
to a source (sun or moon).

UNITS: degrees

TYPE: REAL (fp)

DIMENSION: Scalar or same as geo input
ATTRIBUTES: INTENT(OUT), OPTIONAL

The azimuth angle subtended by the horizontal
projection of a direct line from the source
to the FOV and the North-South axis measured
clockwise from North.

UNITS: degrees from North (0->360)

TYPE: REAL (fp)

DIMENSION: Scalar or same as geo input
ATTRIBUTES: INTENT(OUT), OPTIONAL

The zenith angle used to approximate downwelling
flux transmissivity

UNITS: degrees

TYPE: REAL (fp)

DIMENSION: Scalar or same as geo input
ATTRIBUTES: INTENT(OUT), OPTIONAL

The year in 4-digit format, e.g. 1997.
UNITS: N/A

TYPE: INTEGER

DIMENSION: Scalar or same as geo input
ATTRIBUTES: INTENT(OUT), OPTIONAL

The month of the year (1-12).

UNITS: N/A

TYPE: INTEGER

DIMENSION: Scalar or same as geo input
ATTRIBUTES: INTENT(OUT), OPTIONAL

The day of the month (1-28/29/30/31).
UNITS: N/A

TYPE: INTEGER

DIMENSION: Scalar or same as geo input
ATTRIBUTES: INTENT(OUT), OPTIONAL

A.7.7 CRTM_Geometry_InquireFile interface

NAME:

CRTM_Geometry_InquireFile

PURPOSE:

Function to inquire CRTM Geometry object files.

147

CALLING SEQUENCE:
Error_Status = CRTM_Geometry_InquireFile(Filename , &
n_Profiles = n_Profiles)

INPUTS:
Filename: Character string specifying the name of a
CRTM Geometry data file to read.
UNITS: N/A
TYPE: CHARACTER (%)
DIMENSION: Scalar
ATTRIBUTES: INTENT(IN)

OPTIONAL OUTPUTS:
n_Profiles: The number of profiles for which their is geometry
information in the data file.
UNITS: N/A
TYPE: INTEGER
DIMENSION: Scalar
ATTRIBUTES: OPTIONAL, INTENT(QUT)

FUNCTION RESULT:

Error_Status: The return value is an integer defining the error status.
The error codes are defined in the Message_Handler module.
If == SUCCESS, the file inquire was successful

== FAILURE, an unrecoverable error occurred.

UNITS: N/A
TYPE: INTEGER
DIMENSION: Scalar

A.7.8 CRTM_Geometry_Inspect interface

NAME:
CRTM_Geometry_Inspect

PURPOSE:
Subroutine to print the contents of a CRTM Geometry object to stdout.

CALLING SEQUENCE:
CALL CRTM_Geometry_Inspect(geo)

INPUTS:
geo: CRTM Geometry object to display.
UNITS: N/A
TYPE: CRTM_Geometry_type

DIMENSION: Scalar
ATTRIBUTES: INTENT(IN)

148

A.7.9 CRTM_Geometry_IsValid interface

NAME:
CRTM_Geometry_IsValid

PURPOSE:
Non-pure function to perform some simple validity checks on a
CRTM Geometry object.

If invalid data is found, a message is printed to stdout.

CALLING SEQUENCE:
result = CRTM_Geometry_IsValid(geo)

or

IF (CRTM_Geometry_IsValid(geo)) THEN....

0BJECTS:
geo: CRTM Geometry object which is to have its
contents checked.
UNITS: N/A
TYPE: CRTM_Geometry_type

DIMENSION: Scalar
ATTRIBUTES: INTENT(IN)

FUNCTION RESULT:

result: Logical variable indicating whether or not the input
passed the check.
If == .FALSE., Geometry object is unused or contains

invalid data.
== .TRUE., Geometry object can be used in CRTM.

UNITS: N/A
TYPE: LOGICAL
DIMENSION: Scalar

A.7.10 CRTM_Geometry ReadFile interface

NAME:
CRTM_Geometry_ReadFile

PURPOSE:
Function to read CRTM Geometry object files.

CALLING SEQUENCE:
Error_Status = CRTM_Geometry_ReadFile(Filename

-

PR

Geometry s
Quiet = Quiet ,
No_Close = No_Close ,

149

INPUTS:
Filename:

OUTPUTS:
Geometry:

OPTIONAL INPUTS:
Quiet:

No_Close:

OPTIONAL OUTPUTS:
n_Profiles:

FUNCTION RESULT:
Error_Status:

n_Profiles = n_Profiles)

Character string specifying the name of an
a Geometry data file to read.

UNITS: N/A

TYPE: CHARACTER (%)

DIMENSION: Scalar

ATTRIBUTES: INTENT(IN)

CRTM Geometry object array containing the
data read from file.

UNITS: N/A

TYPE: CRTM_Geometry_type

DIMENSION: Rank-1

ATTRIBUTES: INTENT(QOUT)

Set this logical argument to suppress INFORMATION

messages being printed to stdout

If == .FALSE., INFORMATION messages are OUTPUT [DEFAULT].
== .TRUE., INFORMATION messages are SUPPRESSED.

If not specified, default is .FALSE.

UNITS: N/A

TYPE: LOGICAL

DIMENSION: Scalar

ATTRIBUTES: INTENT(IN), OPTIONAL

Set this logical argument to NOT close the file upon exit.

If == .FALSE., the input file is closed upon exit [DEFAULT]
== .TRUE., the input file is NOT closed upon exit.

If not specified, default is .FALSE.

UNITS: N/A

TYPE: LOGICAL

DIMENSION: Scalar

ATTRIBUTES: INTENT(IN), OPTIONAL

The number of profiles for which data was read.
UNITS: N/A

TYPE: INTEGER

DIMENSION: Scalar

ATTRIBUTES: OPTIONAL, INTENT(OUT)

The return value is an integer defining the error status.
The error codes are defined in the Message_Handler module.
If == SUCCESS, the file read was successful

== FAILURE, an unrecoverable error occurred.
UNITS: N/A
TYPE: INTEGER
DIMENSION: Scalar

150

A.7.11 CRTM Geometry ReadRecord interface

NAME:
CRTM_Geometry_

PURPOSE:
Utility functi

CALLING SEQUENCE:
Error_Status =

INPUTS:
FilelD:

OUTPUTS:
Geometry:

FUNCTION RESULT:
Error_Status:

ReadRecord

on to read a single Geometry data record

CRTM_Geometry_ReadRecord(FileID, Geometry)

Logical unit number from which to read data.
UNITS: N/A

TYPE: INTEGER

DIMENSION: Scalar

ATTRIBUTES: INTENT(IN)

CRTM Geometry object containing the data read in.
UNITS: N/A

TYPE: CRTM_Geometry_type

DIMENSION: Scalar

ATTRIBUTES: INTENT(OUT)

The return value is an integer defining the error status.
The error codes are defined in the Message_Handler module.
If == SUCCESS, the read was successful

== FAILURE, an unrecoverable error occurred.
UNITS: N/A
TYPE: INTEGER
DIMENSION: Scalar

A.7.12 CRTM_Geometry_SetValue interface

NAME:
CRTM_Geometry_

PURPOSE:

SetValue

Elemental subroutine to set the values of CRTM Geometry
object components.

CALLING SEQUENCE:

CALL CRTM_Geometry_SetValue(geo, &

iFOVv
Longitude

iFOVv
Longitude

151

OBJECTS:
geo:

OPTIONAL INPUTS:
iFOV:

Longitude:

Latitude:

Surface_Altitude:

Sensor_Scan_Angle:

Sensor_Zenith_Angle:

Latitude = Latitude

Surface_Altitude = Surface_Altitude
Sensor_Scan_Angle = Sensor_Scan_Angle

B

>

>

Sensor_Zenith_Angle = Sensor_Zenith_Angle ,
Sensor_Azimuth_Angle = Sensor_Azimuth_Angle,
Source_Zenith_Angle = Source_Zenith_Angle ,
Source_Azimuth_Angle = Source_Azimuth_Angle,

Flux_Zenith_Angle = Flux_Zenith_Angle
Year = Year

Month = Month

Day = Day

Geometry object for which component values

are to be set.

UNITS: N/A

TYPE: CRTM_Geometry_type
DIMENSION: Scalar or any rank
ATTRIBUTES: INTENT(IN QOUT)

Sensor field-of-view index.

UNITS: N/A

TYPE: INTEGER

DIMENSION: Scalar or same as geo input
ATTRIBUTES: INTENT(IN), OPTIONAL

Earth longitude

UNITS: degrees East (0->360)

TYPE: REAL (fp)

DIMENSION: Scalar or same as geo input
ATTRIBUTES: INTENT(IN), OPTIONAL

Earth latitude.

UNITS: degrees North (-90->+90)
TYPE: REAL (fp)

DIMENSION: Scalar or same as geo input
ATTRIBUTES: INTENT(IN), OPTIONAL

Altitude of the Earth’s surface at the specifed

lon/lat location.

UNITS: metres (m)

TYPE: REAL (fp)

DIMENSION: Scalar or same as geo input
ATTRIBUTES: INTENT(IN), OPTIONAL

The sensor scan angle from nadir.
UNITS: degrees

TYPE: REAL (fp)

DIMENSION: Scalar or same as geo input
ATTRIBUTES: INTENT(IN), OPTIONAL

The zenith angle from the field-of-view
to the semnsor.

152

>

B

B

RS R

Sensor_Azimuth_Angle:

Source_Zenith_Angle:

Source_Azimuth_Angle:

Flux_Zenith_Angle:

Year:

Month:

Day:

UNITS: degrees

TYPE: REAL (fp)

DIMENSION: Scalar or same as geo input
ATTRIBUTES: INTENT(IN), OPTIONAL

The azimuth angle subtended by the horizontal
projection of a direct line from the satellite
to the FOV and the North-South axis measured
clockwise from North.

UNITS: degrees from North (0->360)

TYPE: REAL (fp)

DIMENSION: Scalar or same as geo input
ATTRIBUTES: INTENT(IN), OPTIONAL

The zenith angle from the field-of-view
to a source (sun or moon).

UNITS: degrees

TYPE: REAL(fp)

DIMENSION: Scalar or same as geo input
ATTRIBUTES: INTENT(IN), OPTIONAL

The azimuth angle subtended by the horizontal
projection of a direct line from the source
to the FOV and the North-South axis measured
clockwise from North.

UNITS: degrees from North (0->360)

TYPE: REAL (fp)

DIMENSION: Scalar or same as geo input
ATTRIBUTES: INTENT(IN), OPTIONAL

The zenith angle used to approximate downwelling
flux transmissivity

UNITS: degrees

TYPE: REAL(fp)

DIMENSION: Scalar or same as geo input
ATTRIBUTES: INTENT(IN), OPTIONAL

The year in 4-digit format, e.g. 1997.
UNITS: N/A

TYPE: INTEGER

DIMENSION: Scalar or same as geo input
ATTRIBUTES: INTENT(IN), OPTIONAL

The month of the year (1-12).

UNITS: N/A

TYPE: INTEGER

DIMENSION: Scalar or same as geo input
ATTRIBUTES: INTENT(IN), OPTIONAL

The day of the month (1-28/29/30/31).
UNITS: N/A

TYPE: INTEGER

DIMENSION: Scalar or same as geo input
ATTRIBUTES: INTENT(IN), OPTIONAL

153

A.7.13 CRTM_Geometry_WriteFile interface

NAME:

CRTM_Geometry_WriteFile

PURPOSE:

Function to write CRTM Geometry object files.

CALLING SEQUENCE:

Error_Status = CRTM_Geometry_WriteFile(Filename , &
Geometry , &
Quiet = Quiet , &
No_Close = No_Close)

INPUTS:
Filename:

Geometry:

OPTIONAL INPUTS:
Quiet:

No_Close:

Character string specifying the name of the
Geometry format data file to write.

UNITS: N/A

TYPE: CHARACTER (%)

DIMENSION: Scalar

ATTRIBUTES: INTENT(IN)

CRTM Geometry object array containing the Geometry
data to write.

UNITS: N/A

TYPE: CRTM_Geometry_type

DIMENSION: Rank-1

ATTRIBUTES: INTENT(IN)

Set this logical argument to suppress INFORMATION

messages being printed to stdout

If == .FALSE., INFORMATION messages are OUTPUT [DEFAULT].
== .TRUE., INFORMATION messages are SUPPRESSED.

If not specified, default is .FALSE.

UNITS: N/A

TYPE: LOGICAL

DIMENSION: Scalar

ATTRIBUTES: INTENT(IN), OPTIONAL

Set this logical argument to NOT close the file upon exit.

If == .FALSE., the input file is closed upon exit [DEFAULT]
== .TRUE., the input file is NOT closed upon exit.

If not specified, default is .FALSE.

UNITS: N/A

TYPE: LOGICAL

DIMENSION: Scalar

ATTRIBUTES: INTENT(IN), OPTIONAL

154

FUNCTION RESULT:

Error_Status: The return value is an integer defining the error status.
The error codes are defined in the Message_Handler module.
If == SUCCESS, the file write was successful

== FAILURE, an unrecoverable error occurred.

UNITS: N/A
TYPE: INTEGER
DIMENSION: Scalar

SIDE EFFECTS:
- If the output file already exists, it is overwritten.
- If an error occurs during *writing*, the output file is deleted before
returning to the calling routine.

A.7.14 CRTM Geometry WriteRecord interface

NAME:
CRTM_Geometry_WriteRecord

PURPOSE:
Function to write a single Geometry data record

CALLING SEQUENCE:
Error_Status = CRTM_Geometry_WriteRecord(FileID, Geometry)

INPUTS:

FilelD: Logical unit number to which data is written
UNITS: N/A
TYPE: INTEGER
DIMENSION: Scalar
ATTRIBUTES: INTENT(IN)

Geometry: CRTM Geometry object containing the data to write.
UNITS: N/A
TYPE: CRTM_Geometry_type

DIMENSION: Scalar
ATTRIBUTES: INTENT(IN)

FUNCTION RESULT:

Error_Status: The return value is an integer defining the error status.
The error codes are defined in the Message_Handler module.
If == SUCCESS the record write was successful

== FAILURE an unrecoverable error occurred.

UNITS: N/A
TYPE: INTEGER
DIMENSION: Scalar

155

A.8 RTSolution Structure

TYPE :: CRTM_RTSolution_type
! Allocation indicator
LOGICAL :: Is_Allocated = .FALSE.
! Dimensions
INTEGER :: n_Layers = 0 ! K
! Sensor information
CHARACTER (STRLEN) :: Sensor_ID = 7

INTEGER :: WMO_Satellite_ID = INVALID_WMO_SATELLITE_ID
INTEGER :: WMO_Sensor_ID = INVALID_WMO_SENSOR_ID
INTEGER :: Sensor_Channel =0

! RT algorithm information

CHARACTER(STRLEN) :: RT_Algorithm_Name = ’’

! Forward radiative transfer intermediate results for a single channel
! These components are not defined when they are used as TL, AD

! and K variables

REAL(fp) :: SOD = ZERO ! Scattering Optical Depth
REAL(fp) :: Surface_Emissivity = ZERO

REAL(fp) :: Up_Radiance = ZERO

REAL(fp) :: Down_Radiance = ZERO

REAL(fp) :: Down_Solar_Radiance = ZERO

REAL(fp) :: Surface_Planck_Radiance = ZERO

REAL(fp), ALLOCATABLE :: Upwelling Radiance(:) ' K

REAL(fp), ALLOCATABLE :: Layer_Optical_Depth(:) ! K
! Radiative transfer results for a single channel/node
REAL(fp) :: Radiance = ZERO
REAL(fp) :: Brightness_Temperature = ZERO
END TYPE CRTM_RTSolution_type

Figure A.8: CRTM_RTSolution_type structure definition.

156

A.8.1 CRTM_RTSolution_Associated interface

NAME:
CRTM_RTSolution_Associated

PURPOSE:
Elemental function to test the status of the allocatable components
of a CRTM RTSolution object.

CALLING SEQUENCE:
Status = CRTM_RTSolution_Associated(RTSolution)

OBJECTS:
RTSolution: RTSolution structure which is to have its member’s
status tested.
UNITS: N/A
TYPE: CRTM_RTSolution_type

DIMENSION: Scalar or any rank
ATTRIBUTES: INTENT(IN)

FUNCTION RESULT:

Status: The return value is a logical value indicating the
status of the RTSolution members.
.TRUE. - if the array components are allocated.
.FALSE. - if the array components are not allocated.
UNITS: N/A
TYPE: LOGICAL

DIMENSION: Same as input RTSolution argument

A.8.2 CRTM_RTSolution_Compare interface

NAME:
CRTM_RTSolution_Compare

PURPOSE:
Elemental function to compare two CRTM_RTSolution objects to within
a user specified number of significant figures.

CALLING SEQUENCE:
is_comparable = CRTM_RTSolution_Compare(x, y, n_SigFig=n_SigFig)

OBJECTS:
X, y: Two CRTM RTSolution objects to be compared.
UNITS: N/A
TYPE: CRTM_RTSolution_type

DIMENSION: Scalar or any rank
ATTRIBUTES: INTENT(IN)

OPTIONAL INPUTS:
n_SigFig: Number of significant figure to compare floating point

157

components.

UNITS: N/A

TYPE: INTEGER

DIMENSION: Conformable with inputs
ATTRIBUTES: INTENT(IN), OPTIONAL

FUNCTION RESULT:
is_comparable: Logical value indicating whether the inputs are

comparable.
UNITS: N/A
TYPE: LOGICAL

DIMENSION: Same as inputs.

A.8.3 CRTM RTSolution_Create interface

NAME:
CRTM_RTSolution_Create

PURPOSE:
Elemental subroutine to create an instance of the CRTM RTSolution object.

CALLING SEQUENCE:
CALL CRTM_RTSolution_Create(RTSolution, n_Layers)

OBJECTS:
RTSolution: RTSolution structure.
UNITS: N/A
TYPE: CRTM_RTSolution_type
DIMENSION: Scalar or any rank
ATTRIBUTES: INTENT(OUT)
INPUTS:
n_Layers: Number of layers for which there is RTSolution data.
Must be > O.
UNITS: N/A
TYPE: INTEGER

DIMENSION: Same as RTSolution object
ATTRIBUTES: INTENT(IN)

A.8.4 CRTM RTSolution_DefineVersion interface

NAME:
CRTM_RTSolution_DefineVersion

PURPOSE:
Subroutine to return the module version information.

158

CALLING SEQUENCE:
CALL CRTM_RTSolution_DefineVersion(Id)

OUTPUTS:
Id: Character string containing the version Id information
for the module.
UNITS: N/A
TYPE: CHARACTER (%)

DIMENSION: Scalar
ATTRIBUTES: INTENT (OUT)

A.8.5 CRTM_RTSolution Destroy interface

NAME:
CRTM_RTSolution_Destroy

PURPOSE:
Elemental subroutine to re-initialize CRTM RTSolution objects.

CALLING SEQUENCE:
CALL CRTM_RTSolution_Destroy(RTSolution)

OBJECTS:
RTSolution: Re-initialized RTSolution structure.
UNITS: N/A
TYPE: CRTM_RTSolution_type

DIMENSION: Scalar OR any rank
ATTRIBUTES: INTENT(QOUT)

A.8.6 CRTM_RTSolution_InquireFile interface

NAME:
CRTM_RTSolution_InquireFile

PURPOSE:
Function to inquire CRTM RTSolution object files.

CALLING SEQUENCE:
Error_Status = CRTM_RTSolution_InquireFile(Filename , &
n_Channels n_Channels, &
n_Profiles = n_Profiles)

INPUTS:
Filename: Character string specifying the name of a
CRTM RTSolution data file to read.
UNITS: N/A

159

TYPE: CHARACTER (*)
DIMENSION: Scalar
ATTRIBUTES: INTENT(IN)

OPTIONAL OUTPUTS:
n_Channels: The number of spectral channels for which there is
data in the file.
UNITS: N/A
TYPE: INTEGER
DIMENSION: Scalar
ATTRIBUTES: OPTIONAL, INTENT(OUT)

n_Profiles: The number of profiles in the data file.
UNITS: N/A
TYPE: INTEGER

DIMENSION: Scalar
ATTRIBUTES: OPTIONAL, INTENT(OQUT)

FUNCTION RESULT:

Error_Status: The return value is an integer defining the error status.
The error codes are defined in the Message_Handler module.
If == SUCCESS, the file inquire was successful

== FAILURE, an unrecoverable error occurred.

UNITS: N/A
TYPE: INTEGER
DIMENSION: Scalar

A.8.7 CRTM_RTSolution_Inspect interface

NAME:
CRTM_RTSolution_Inspect

PURPOSE:
Subroutine to print the contents of a CRTM RTSolution object to stdout.

CALLING SEQUENCE:
CALL CRTM_RTSolution_Inspect(RTSolution)

INPUTS:
RTSolution: CRTM RTSolution object to display.
UNITS: N/A
TYPE: CRTM_RTSolution_type

DIMENSION: Scalar or Rank-2 (n_channels x n_profiles)
ATTRIBUTES: INTENT(IN)

160

A.8.8 CRTM_RTSolution_ReadFile interface
NAME:
CRTM_RTSolution_ReadFile

PURPOSE:
Function to read CRTM RTSolution object files.

CALLING SEQUENCE:

Error_Status = CRTM_RTSolution_ReadFile(Filename , &
RTSolution , &
Quiet = Quiet , &
n_Channels = n_Channels , &
n_Profiles = n_Profiles , &
INPUTS:
Filename: Character string specifying the name of an
RTSolution format data file to read.
UNITS: N/A
TYPE: CHARACTER (%)
DIMENSION: Scalar
ATTRIBUTES: INTENT(IN)
OUTPUTS:
RTSolution: CRTM RTSolution object array containing the RTSolution
data.
UNITS: N/A
TYPE: CRTM_RTSolution_type
DIMENSION: Rank-2 (n_Channels x n_Profiles)
ATTRIBUTES: INTENT(OUT)
OPTIONAL INPUTS:
Quiet: Set this logical argument to suppress INFORMATION
messages being printed to stdout
If == .FALSE., INFORMATION messages are OUTPUT [DEFAULT].

== .TRUE., INFORMATION messages are SUPPRESSED.
If not specified, default is .FALSE.
UNITS: N/A
TYPE: LOGICAL
DIMENSION: Scalar
ATTRIBUTES: INTENT(IN), OPTIONAL

OPTIONAL OUTPUTS:

n_Channels: The number of channels for which data was read.
UNITS: N/A
TYPE: INTEGER

DIMENSION: Scalar
ATTRIBUTES: OPTIONAL, INTENT(QUT)

n_Profiles: The number of profiles for which data was read.
UNITS: N/A
TYPE: INTEGER

DIMENSION: Scalar

161

ATTRIBUTES: OPTIONAL, INTENT(OUT)

FUNCTION RESULT:

Error_Status: The return value is an integer defining the error status.
The error codes are defined in the Message_Handler module.
If == SUCCESS, the file read was successful

== FAILURE, an unrecoverable error occurred.

UNITS: N/A
TYPE: INTEGER
DIMENSION: Scalar

A.8.9 CRTM RTSolution_WriteFile interface

NAME:
CRTM_RTSolution_WriteFile

PURPOSE:
Function to write CRTM RTSolution object files.

CALLING SEQUENCE:
Error_Status = CRTM_RTSolution_WriteFile(Filename , &
RTSolution , &
Quiet = Quiet)

INPUTS:
Filename: Character string specifying the name of the
RTSolution format data file to write.
UNITS: N/A
TYPE: CHARACTER (%)
DIMENSION: Scalar
ATTRIBUTES: INTENT(IN)

RTSolution: CRTM RTSolution object array containing the RTSolution

data.
UNITS: N/A
TYPE: CRTM_RTSolution_type

DIMENSION: Rank-2 (n_Channels x n_Profiles)
ATTRIBUTES: INTENT(IN)

OPTIONAL INPUTS:
Quiet: Set this logical argument to suppress INFORMATION
messages being printed to stdout
If == .FALSE., INFORMATION messages are OUTPUT [DEFAULT].
== .TRUE., INFORMATION messages are SUPPRESSED.
If not specified, default is .FALSE.
UNITS: N/A
TYPE: LOGICAL
DIMENSION: Scalar
ATTRIBUTES: INTENT(IN), OPTIONAL

162

FUNCTION RESULT:

Error_Status: The return value is an integer defining the error status.
The error codes are defined in the Message_Handler module.
If == SUCCESS, the file write was successful

== FAILURE, an unrecoverable error occurred.

UNITS: N/A
TYPE: INTEGER
DIMENSION: Scalar

SIDE EFFECTS:
- If the output file already exists, it is overwritten.
- If an error occurs during *writing*, the output file is deleted before
returning to the calling routine.

A.8.10 CRTM_RTSolution_Zero interface

NAME:
CRTM_RTSolution_Zero

PURPOSE:
Elemental subroutine to zero out the data components
in a CRTM RTSolution object.

CALLING SEQUENCE:
CALL CRTM_RTSolution_Zero(rts)

OUTPUTS:
rts: CRTM RTSolution structure in which the data components

are to be zeroed out.
UNITS: N/A
TYPE: CRTM_RTSolution_type
DIMENSION: Scalar or any rank
ATTRIBUTES: INTENT(IN OUT)

COMMENTS:

- The dimension components of the structure are *NOT* set to zero.
- The sensor infomration and RT algorithm components are
NOT reset in this routine.

163

A.9 Options Structure

164

TYPE :: CRTM_Options_type
! Allocation indicator
LOGICAL :: Is_Allocated = .FALSE.

! Input checking on by default
LOGICAL :: Check_Input = .TRUE.

! User defined MW water emissivity algorithm
LOGICAL :: Use_01d_MWSSEM = .FALSE.

! Antenna correction application
LOGICAL :: Use_Antenna_Correction = .FALSE.

! NLTE radiance correction is ON by default
LOGICAL :: Apply_NLTE_Correction = .TRUE.

! RT Algorithm is set to ADA by default
INTEGER(Long) :: RT_Algorithm_Id = RT_ADA

! Aircraft flight level pressure
! Value > O turns "on" the aircraft option
REAL(Double) :: Aircraft_Pressure = -0NE

! User defined number of RT solver streams (streams up + streams down)
LOGICAL :: Use_n_Streams = .FALSE.
INTEGER(Long) :: n_Streams = 0

! Scattering switch. Default is for
! Cloud/Aerosol scattering to be included.
LOGICAL :: Include_Scattering = .TRUE.

! User defined emissivity/reflectivity

! ...Dimensions

INTEGER(Long) :: n_Channels = O ! L dimension
! ...Index into channel-specific components
INTEGER(Long) :: Channel = 0

! ...Emissivity optional arguments

LOGICAL :: Use_Emissivity = .FALSE.

REAL (Double), ALLOCATABLE :: Emissivity(:) ! L
! ...Direct reflectivity optional arguments
LOGICAL :: Use_Direct_Reflectivity = .FALSE.
REAL (Double), ALLOCATABLE :: Direct_Reflectivity(:) ! L

! SSU instrument input
TYPE(SSU_Input_type) :: SSU

! Zeeman-splitting input
TYPE(Zeeman_Input_type) :: Zeeman
END TYPE CRTM_Options_type

Figure A.9: CRTM_Options_type structure definition.

165

A.9.1 CRTM Options_Associated interface

NAME:
CRTM_Options_Associated

PURPOSE:
Elemental function to test the status of the allocatable components

of a CRTM Options object.

CALLING SEQUENCE:
Status = CRTM_Options_Associated(Options)

0BJECTS:
Options: Options structure which is to have its member’s
status tested.
UNITS: N/A
TYPE: CRTM_Options_type

DIMENSION: Scalar or any rank
ATTRIBUTES: INTENT(IN)

FUNCTION RESULT:

Status: The return value is a logical value indicating the
status of the Options members.
.TRUE. - if the array components are allocated.
.FALSE. - if the array components are not allocated.
UNITS: N/A
TYPE: LOGICAL

DIMENSION: Same as input Options argument

A.9.2 CRTM_Options_Create interface

NAME:
CRTM_Options_Create

PURPOSE:

Elemental subroutine to create an instance of the CRTM Options object.

CALLING SEQUENCE:
CALL CRTM_Options_Create(Options, n_Channels)

0BJECTS:
Options: Options structure.
UNITS: N/A
TYPE: CRTM_Options_type
DIMENSION: Scalar or any rank
ATTRIBUTES: INTENT(QUT)
INPUTS:
n_Channels: Number of channels for which there is Options data.

166

Must be > 0.
This dimension only applies to the emissivity-related

components.
UNITS: N/A
TYPE: INTEGER

DIMENSION: Same as Options object
ATTRIBUTES: INTENT(IN)

A.9.3 CRTM Options_DefineVersion interface

NAME:
CRTM_Options_DefineVersion

PURPOSE:
Subroutine to return the module version information.

CALLING SEQUENCE:
CALL CRTM_Options_DefineVersion(Id)

OUTPUTS:
Id: Character string containing the version Id information
for the module.
UNITS: N/A
TYPE: CHARACTER (%)

DIMENSION: Scalar
ATTRIBUTES: INTENT(OUT)

A.9.4 CRTM Options_Destroy interface

NAME:
CRTM_Options_Destroy

PURPOSE:
Elemental subroutine to re-initialize CRTM Options objects.

CALLING SEQUENCE:
CALL CRTM_Options_Destroy(Options)

0BJECTS:
Options: Re-initialized Options structure.
UNITS: N/A
TYPE: CRTM_Options_type

DIMENSION: Scalar OR any rank
ATTRIBUTES: INTENT(OUT)

167

A.9.5 CRTM Options_InquireFile interface

NAME:
CRTM_Options_InquireFile

PURPOSE:
Function to inquire CRTM Options object files.

CALLING SEQUENCE:
Error_Status = CRTM_Options_InquireFile(&
Filename , &
n_Profiles = n_Profiles)

INPUTS:
Filename: Character string specifying the name of a
CRTM Options data file to read.
UNITS: N/A
TYPE: CHARACTER (%)
DIMENSION: Scalar
ATTRIBUTES: INTENT(IN)

OPTIONAL OUTPUTS:

n_Profiles: The number of profiles in the data file.
UNITS: N/A
TYPE: INTEGER

DIMENSION: Scalar
ATTRIBUTES: OPTIONAL, INTENT(QUT)

FUNCTION RESULT:

Error_Status: The return value is an integer defining the error status.
The error codes are defined in the Message_Handler module.
If == SUCCESS, the file inquire was successful

== FAILURE, an unrecoverable error occurred.

UNITS: N/A
TYPE: INTEGER
DIMENSION: Scalar

A.9.6 CRTM Options_Inspect interface
NAME:
CRTM_Options_Inspect

PURPOSE:
Subroutine to print the contents of a CRTM Options object to stdout.

CALLING SEQUENCE:
CALL CRTM_Options_Inspect(Options)

INPUTS:

168

Options: CRTM Options object to display.
UNITS: N/A
TYPE: CRTM_Options_type
DIMENSION: Scalar
ATTRIBUTES: INTENT(IN)

A.9.7 CRTM Options_IsValid interface
NAME:
CRTM_Options_IsValid
PURPOSE:
Non-pure function to perform some simple validity checks on a
CRTM Options object.

If invalid data is found, a message is printed to stdout.

CALLING SEQUENCE:
result = CRTM_Options_IsValid(opt)

or

IF (CRTM_Options_IsValid(opt)) THEN....

0BJECTS:
opt: CRTM Options object which is to have its
contents checked.
UNITS: N/A
TYPE: CRTM_Options_type

DIMENSION: Scalar
ATTRIBUTES: INTENT(IN)

FUNCTION RESULT:

result: Logical variable indicating whether or not the input
passed the check.
If == .FALSE., Options object is unused or contains

invalid data.
== .TRUE., Options object can be used in CRTM.

UNITS: N/A
TYPE: LOGICAL
DIMENSION: Scalar

A.9.8 CRTM Options_ReadFile interface

NAME:
CRTM_Options_ReadFile

169

PURPOSE:

Function to read CRTM Options object files.

CALLING SEQUENCE:
Error_Status

INPUTS:
Filename:

OUTPUTS:
Options:

OPTIONAL INPUTS:
Quiet:

OPTIONAL OUTPUTS:
n_Profiles:

FUNCTION RESULT:
Error_Status:

CRTM_Options_ReadFile(&

Filename , &
Options , &
Quiet = Quiet , &
n_Profiles = n_Profiles)

Character string specifying the name of an
Options format data file to read.

UNITS: N/A

TYPE: CHARACTER (%)

DIMENSION: Scalar

ATTRIBUTES: INTENT(IN)

CRTM Options object array containing the Options
data.

UNITS: N/A

TYPE: CRTM_Options_type

DIMENSION: Rank-1 (n_Profiles)

ATTRIBUTES: INTENT(OUT)

Set this logical argument to suppress INFORMATION

messages being printed to stdout

If == .FALSE., INFORMATION messages are OUTPUT [DEFAULT].
== .TRUE., INFORMATION messages are SUPPRESSED.

If not specified, default is .FALSE.

UNITS: N/A

TYPE: LOGICAL

DIMENSION: Scalar

ATTRIBUTES: INTENT(IN), OPTIONAL

The number of profiles for which data was read.
UNITS: N/A

TYPE: INTEGER

DIMENSION: Scalar

ATTRIBUTES: OPTIONAL, INTENT(OUT)

The return value is an integer defining the error status.
The error codes are defined in the Message_Handler module.
If == SUCCESS, the file read was successful

== FAILURE, an unrecoverable error occurred.
UNITS: N/A
TYPE: INTEGER
DIMENSION: Scalar

170

A.9.9 CRTM Options_WriteFile interface

NAME:

CRTM_Options_WriteFile

PURPOSE:

Function to write CRTM Options object files.

CALLING SEQUENCE:

Error_Status =

INPUTS:
Filename:

Options:

OPTIONAL INPUTS:
Quiet:

FUNCTION RESULT:
Error_Status:

SIDE EFFECTS:

CRTM_Options_WriteFile(Filename , &
Options , &
Quiet = Quiet)

Character string specifying the name of the
Options format data file to write.

UNITS: N/A

TYPE: CHARACTER ()

DIMENSION: Scalar

ATTRIBUTES: INTENT(IN)

CRTM Options object array containing the Options
data.

UNITS: N/A

TYPE: CRTM_Options_type

DIMENSION: Rank-1 (n_Profiles)

ATTRIBUTES: INTENT(IN)

Set this logical argument to suppress INFORMATION

messages being printed to stdout

If == .FALSE., INFORMATION messages are OUTPUT [DEFAULT].
== .TRUE., INFORMATION messages are SUPPRESSED.

If not specified, default is .FALSE.

UNITS: N/A

TYPE: LOGICAL

DIMENSION: Scalar

ATTRIBUTES: INTENT(IN), OPTIONAL

The return value is an integer defining the error status.
The error codes are defined in the Message_Handler module.
If == SUCCESS, the file write was successful

== FAILURE, an unrecoverable error occurred.
UNITS: N/A
TYPE: INTEGER
DIMENSION: Scalar

171

- If the output file already exists, it is overwritten.
- If an error occurs during *writing*, the output file is deleted before
returning to the calling routine.

172

A.10 SSU_Input Structure

The SSU_Input structure is a component of the Options input structure. Note in figure A.10 that the structure
is declared as PRIVATE. As such, the only way to set values in, or get values from, the structure is via the
SSU_Input_SetValue or SSU_Input_GetValue subroutines respectively.

TYPE :: SSU_Input_type
PRIVATE
! Release and version information
INTEGER(Long) :: Release = SSU_INPUT_RELEASE
INTEGER(Long) :: Version = SSU_INPUT_VERSION
! Time in decimal year (e.g. 2009.08892694 corresponds to 11:00 Feb. 2, 2009)
REAL(Double) :: Time = ZERO
! SSU C02 cell pressures (hPa)
REAL(Double) :: Cell_Pressure(MAX_N_CHANNELS) = ZERO
END TYPE SSU_Input_type

Figure A.10: SSU_Input_type structure definition.

173

A.10.1 SSU_Input_CellPressurelsSet interface

NAME:
SSU_Input_CellPressurelsSet

PURPOSE:
Elemental function to determine if SSU_Input object cell pressures

are set (i.e. > zero).

CALLING SEQUENCE:
result = SSU_Input_CellPressureIsSet(ssu)

or
IF (SSU_Input_CellPressurelsSet(ssu)) THEN

END IF

0BJECTS:
ssu: SSU_Input object for which the cell pressures
are to be tested.
UNITS: N/A
TYPE: SSU_Input_type

DIMENSION: Scalar or any rank
ATTRIBUTES: INTENT(IN)

FUNCTION RESULT:

result: Logical variable indicating whether or not all the

SSU cell pressures are set.

If == .FALSE., cell pressure values are <= 0.0hPa and
thus are considered to be NOT set or valid.

== .TRUE., cell pressure values are > 0.0hPa and

thus are considered to be set and valid.

UNITS: N/A

TYPE: LOGICAL

DIMENSION: Scalar

A.10.2 SSU_Input _DefineVersion interface

NAME:
SSU_Input_DefineVersion

PURPOSE:
Subroutine to return the module version information.

CALLING SEQUENCE:
CALL SSU_Input_DefineVersion(Id)

OUTPUTS:

174

Id: Character string containing the version Id information
for the module.
UNITS: N/A
TYPE: CHARACTER (%)
DIMENSION: Scalar
ATTRIBUTES: INTENT(OUT)

A.10.3 SSU_Input_GetValue interface

NAME:
SSU_Input_GetValue

PURPOSE:
Elemental subroutine to Get the values of SSU_Input
object components.

CALLING SEQUENCE:
CALL SSU_Input_GetValue(SSU_Input s
Channel Channel s
Time Time s
Cell_Pressure Cell_Pressure,
n_Channels n_Channels

D S

0BJECTS:
SSU_Input: SSU_Input object for which component values
are to be set.
UNITS: N/A
TYPE: SSU_Input_type
DIMENSION: Scalar or any rank
ATTRIBUTES: INTENT(IN QOUT)

OPTIONAL INPUTS:
Channel: SSU channel for which the C02 cell pressure
is required.
UNITS: N/A
TYPE: INTEGER
DIMENSION: Scalar or same as SSU_Input
ATTRIBUTES: INTENT(IN), OPTIONAL

OPTIONAL OUTPUTS:

Time: SSU instrument mission time.
UNITS: decimal year
TYPE: REAL (fp)

DIMENSION: Scalar or same as SSU_Input
ATTRIBUTES: INTENT(OUT), OPTIONAL

Cell_Pressure: SSU channel C02 cell pressure. Must be
specified with the Channel optional input
dummy argument.

UNITS: hPa

175

TYPE: REAL (fp)
DIMENSION: Scalar or same as SSU_Input
ATTRIBUTES: INTENT(OUT), OPTIONAL

n_Channels: Number of SSU channels..
UNITS: N/A
TYPE: INTEGER

DIMENSION: Scalar or same as SSU_Input
ATTRIBUTES: INTENT(OUT), OPTIONAL

A.10.4 SSU_Input_Inspect interface

NAME:
SSU_Input_Inspect

PURPOSE:
Subroutine to print the contents of an SSU_Input object to stdout.

CALLING SEQUENCE:
CALL SSU_Input_Inspect(ssu)

INPUTS:
ssu: SSU_Input object to display.
UNITS: N/A
TYPE: SSU_Input_type

DIMENSION: Scalar
ATTRIBUTES: INTENT(IN)

A.10.5 SSU_Input_IsValid interface
NAME:
SSU_Input_IsValid
PURPOSE:
Non-pure function to perform some simple validity checks on a
SSU_Input object.

If invalid data is found, a message is printed to stdout.

CALLING SEQUENCE:
result = SSU_Input_IsValid(ssu)

or

IF (SSU_Input_IsValid(ssu)) THEN....

176

OBJECTS:
ssu:

FUNCTION RESULT:
result:

SSU_Input object which is to have its
contents checked.

UNITS: N/A

TYPE: SSU_Input_type

DIMENSION: Scalar

ATTRIBUTES: INTENT(IN)

Logical variable indicating whether or not the input
passed the check.
If == .FALSE., object is unused or contains
invalid data.

== .TRUE., object can be used.
UNITS: N/A
TYPE: LOGICAL
DIMENSION: Scalar

A.10.6 SSU_Input_ReadFile interface

NAME:

SSU_Input_ReadFile

PURPOSE:

Function to read SSU_Input object files.

CALLING SEQUENCE:

Error_Status = SSU_Input_ReadFile(&

OBJECTS:
SSU_Input:

INPUTS:
Filename:

OPTIONAL INPUTS:
No_Close:

SSU_Input , &
Filename , &
No_Close = No_Close, &
Quiet = Quiet)

SSU_Input object containing the data read from file.
UNITS: N/A

TYPE: SSU_Input_type

DIMENSION: Scalar

ATTRIBUTES: INTENT(OUT)

Character string specifying the name of a
SSU_Input data file to read.

UNITS: N/A

TYPE: CHARACTER (%)

DIMENSION: Scalar

ATTRIBUTES: INTENT(IN)

Set this logical argument to *NOT* close the datafile

177

Quiet:

FUNCTION RESULT:
Error_Status:

upon exiting this routine. This option is required if

the SSU_Input data is embedded within another file.

If == .FALSE., File is closed upon function exit [DEFAULT].
== .TRUE., File is NOT closed upon function exit

If not specified, default is .FALSE.

UNITS: N/A

TYPE: LOGICAL

DIMENSION: Scalar

ATTRIBUTES: INTENT(IN), OPTIONAL

Set this logical argument to suppress INFORMATION

messages being printed to stdout

If == .FALSE., INFORMATION messages are OUTPUT [DEFAULT].
== .TRUE., INFORMATION messages are SUPPRESSED.

If not specified, default is .FALSE.

UNITS: N/A

TYPE: LOGICAL

DIMENSION: Scalar

ATTRIBUTES: INTENT(IN), OPTIONAL

The return value is an integer defining the error status.
The error codes are defined in the Message_Handler module.
If == SUCCESS, the file read was successful

== FAILURE, an unrecoverable error occurred.
UNITS: N/A
TYPE: INTEGER
DIMENSION: Scalar

A.10.7 SSU_Input_SetValue interface

NAME:

SSU_Input_SetValue

PURPOSE:

Elemental subroutine to set the values of SSU_Input
object components.

CALLING SEQUENCE:

CALL SSU_Input_SetValue(SSU_Input , &
Time = Time , &
Cell_Pressure = Cell_Pressure, &
Channel = Channel)
OBJECTS:
SSU_Input: SSU_Input object for which component values

are to be set.

UNITS: N/A

TYPE: SSU_Input_type
DIMENSION: Scalar or any rank

178

OPTIONAL INPUTS:
Time:

Cell_Pressure:

Channel:

A.10.8 SSU_Input_ValidRelease interface

NAME:

ATTRIBUTES:

INTENT(IN OUT)

SSU instrument mission time.

UNITS:
TYPE:
DIMENSION:
ATTRIBUTES:

decimal year

REAL (fp)

Scalar or same as SSU_Input
INTENT (IN), OPTIONAL

SSU channel C02 cell pressure. Must be
specified with the Channel optional dummy

argument.
UNITS:
TYPE:
DIMENSION:
ATTRIBUTES:

hPa

REAL (fp)

Scalar or same as SSU_Input
INTENT(IN), OPTIONAL

SSU channel for which the C02 cell pressure
is to be set. Must be specified with the
Cell_Pressure optional dummy argument.

UNITS:
TYPE:
DIMENSION:
ATTRIBUTES:

SSU_Input_ValidRelease

PURPOSE:

N/A

INTEGER

Scalar or same as SSU_Input
INTENT (IN), OPTIONAL

Function to check the SSU_Input Release value.

CALLING SEQUENCE:

IsValid = SSU_Input_ValidRelease(SSU_Input)

INPUTS:
SSU_Input:

FUNCTION RESULT:
IsValid:

is to be checked.
UNITS: N/A

SSU_Input object for which the Release component

TYPE: SSU_Input_type

DIMENSION: Scalar

ATTRIBUTES: INTENT(IN)

Logical value defining the release validity.

UNITS: N/A

TYPE: LOGICAL
DIMENSION: Scalar

179

A.10.9 SSU_Input_WriteFile interface

NAME:
SSU_Input_WriteFile

PURPOSE:
Function to write SSU_Input object files.

CALLING SEQUENCE:
Error_Status = SSU_Input_WriteFile(&

SSU_Input , &
Filename , &
No_Close = No_Close, &
Quiet = Quiet)
0OBJECTS:
SSU_Input: SSU_Input object containing the data to write to file.
UNITS: N/A
TYPE: SSU_Input_type
DIMENSION: Scalar
ATTRIBUTES: INTENT(IN)
INPUTS:
Filename: Character string specifying the name of a
SSU_Input format data file to write.
UNITS: N/A
TYPE: CHARACTER (%)

DIMENSION: Scalar
ATTRIBUTES: INTENT(IN)

OPTIONAL INPUTS:

No_Close: Set this logical argument to *NOT* close the datafile
upon exiting this routine. This option is required if
the SSU_Input data is to be embedded within another file.
If == .FALSE., File is closed upon function exit [DEFAULT].

== .TRUE., File is NOT closed upon function exit
If not specified, default is .FALSE.
UNITS: N/A
TYPE: LOGICAL
DIMENSION: Scalar
ATTRIBUTES: INTENT(IN), OPTIONAL

Quiet: Set this logical argument to suppress INFORMATION
messages being printed to stdout
If == .FALSE., INFORMATION messages are OUTPUT [DEFAULT].
== .TRUE., INFORMATION messages are SUPPRESSED.
If not specified, default is .FALSE.
UNITS: N/A
TYPE: LOGICAL
DIMENSION: Scalar

180

ATTRIBUTES: INTENT(IN), OPTIONAL

FUNCTION RESULT:

Error_Status: The return value is an integer defining the error status.
The error codes are defined in the Message_Handler module.
If == SUCCESS, the file write was successful

== FAILURE, an unrecoverable error occurred.

UNITS: N/A
TYPE: INTEGER
DIMENSION: Scalar

181

A.11 Zeeman Input Structure

The Zeeman_Input structure is a component of the Options input structure. Note in figure A.11 that the
structure is declared as PRIVATE. As such, the only way to set values in, or get values from, the structure is via
the Zeeman_Input_SetValue or Zeeman Input_GetValue subroutines respectively.

TYPE :: Zeeman_Input_type
PRIVATE
! Release and version information
INTEGER(Long) :: Release = ZEEMAN_INPUT_RELEASE
INTEGER(Long) :: Version = ZEEMAN_INPUT_VERSION
! Earth magnetic field strength in Gauss
REAL(Double) :: Be = DEFAULT_MAGENTIC_FIELD
! Cosine of the angle between the Earth
! magnetic field and wave propagation direction
REAL(Double) :: Cos_ThetaB = ZERO
! Cosine of the azimuth angle of the Be vector.
REAL(Double) :: Cos_PhiB = ZERO
! Doppler frequency shift caused by Earth-rotation.
REAL (Double) :: Doppler_Shift = ZERO

END TYPE Zeeman_Input_type

Figure A.11: Zeeman_Input_type structure definition.

182

A.11.1 Zeeman Input_DefineVersion interface

NAME:
Zeeman_Input_DefineVersion

PURPOSE:
Subroutine to return the module version information.

CALLING SEQUENCE:
CALL Zeeman_Input_DefineVersion(Id)

OUTPUTS:
Id: Character string containing the version Id information
for the module.
UNITS: N/A
TYPE: CHARACTER (%)

DIMENSION: Scalar
ATTRIBUTES: INTENT (OUT)

A.11.2 Zeeman_Input_GetValue interface

NAME:
Zeeman_Input_GetValue

PURPOSE:
Elemental subroutine to get the values of Zeeman_Input
object components.

CALLING SEQUENCE:

CALL Zeeman_Input_GetValue(Zeeman_Input , &
Field_Strength = Field_Strength, &
Cos_ThetaB = Cos_ThetaB , &
Cos_PhiB = Cos_PhiB , &
Doppler_Shift = Doppler_Shift)
OBJECTS:
Zeeman_Input: Zeeman_Input object for which component values
are to be set.
UNITS: N/A
TYPE: Zeeman_Input_type

DIMENSION: Scalar or any rank
ATTRIBUTES: INTENT(IN OUT)

OPTIONAL OUTPUTS:

Field_Strength: Earth’s magnetic filed strength
UNITS: Gauss
TYPE: REAL (fp)

DIMENSION: Scalar or same as Zeeman_Input
ATTRIBUTES: INTENT(OUT), OPTIONAL

183

Cos_ThetaB:

Cos_PhiB:

Doppler_Shift:

Cosine of the angle between the Earth magnetic
field and wave propagation vectors.

UNITS: N/A

TYPE: REAL (fp)

DIMENSION: Scalar or same as Zeeman_Input
ATTRIBUTES: INTENT(OUT), OPTIONAL

Cosine of the azimuth angle of the Earth magnetic
field vector.

UNITS: N/A

TYPE: REAL (fp)

DIMENSION: Scalar or same as Zeeman_Input
ATTRIBUTES: INTENT(OUT), OPTIONAL

Doppler frequency shift caused by Earth-rotation.
Positive towards semsor.

UNITS: KHz

TYPE: REAL (fp)

DIMENSION: Scalar or same as Zeeman_Input
ATTRIBUTES: INTENT(OUT), OPTIONAL

A.11.3 Zeeman_Input_Inspect interface

NAME:
Zeeman_Input_Inspect

PURPOSE:

Subroutine to print the contents of an Zeeman_Input object to stdout.

CALLING SEQUENCE:

CALL Zeeman_Input_Inspect(z)

INPUTS:
z: Zeeman_Input object to display.
UNITS: N/A
TYPE: Zeeman_Input_type

DIMENSION: Scalar
ATTRIBUTES: INTENT(IN)

A.11.4 Zeeman Input_IsValid interface

NAME:
Zeeman_Input_IsValid

PURPOSE:

184

Non-pure function to perform some simple validity checks on a
Zeeman_Input object.

If invalid data is found, a message is printed to stdout.

CALLING SEQUENCE:
result = Zeeman_Input_IsValid(z)

or

IF (Zeeman_Input_IsValid(z)) THEN....

0BJECTS:
z: Zeeman_Input object which is to have its
contents checked.
UNITS: N/A
TYPE: Zeeman_Input_type

DIMENSION: Scalar
ATTRIBUTES: INTENT(IN)

FUNCTION RESULT:
result: Logical variable indicating whether or not the input
passed the check.
If == .FALSE., object is unused or contains
invalid data.
== .TRUE., object can be used.
UNITS: N/A
TYPE: LOGICAL
DIMENSION: Scalar

A.11.5 Zeeman_Input_ReadFile interface

NAME:
Zeeman_Input_ReadFile

PURPOSE:
Function to read Zeeman_Input object files.

CALLING SEQUENCE:
Error_Status = Zeeman_Input_ReadFile(&

Zeeman_Input , &

Filename , &

No_Close = No_Close, &

Quiet = Quiet)

OBJECTS:
Zeeman_Input: Zeeman_Input object containing the data read from file.

UNITS: N/A

TYPE: Zeeman_Input_type

DIMENSION: Scalar

185

ATTRIBUTES: INTENT(OUT)

INPUTS:
Filename: Character string specifying the name of a
Zeeman_Input data file to read.
UNITS: N/A
TYPE: CHARACTER (%)
DIMENSION: Scalar
ATTRIBUTES: INTENT(IN)

OPTIONAL INPUTS:

No_Close: Set this logical argument to *NOT* close the datafile
upon exiting this routine. This option is required if
the Zeeman_Input data is embedded within another file.
If == .FALSE., File is closed upon function exit [DEFAULT].

== .TRUE., File is NOT closed upon function exit
If not specified, default is .FALSE.
UNITS: N/A
TYPE: LOGICAL
DIMENSION: Scalar
ATTRIBUTES: INTENT(IN), OPTIONAL

Quiet: Set this logical argument to suppress INFORMATION
messages being printed to stdout
If == .FALSE., INFORMATION messages are OUTPUT [DEFAULT].
== .TRUE., INFORMATION messages are SUPPRESSED.
If not specified, default is .FALSE.
UNITS: N/A
TYPE: LOGICAL
DIMENSION: Scalar
ATTRIBUTES: INTENT(IN), OPTIONAL

FUNCTION RESULT:

Error_Status: The return value is an integer defining the error status.
The error codes are defined in the Message_Handler module.
If == SUCCESS, the file read was successful

== FAILURE, an unrecoverable error occurred.

UNITS: N/A
TYPE: INTEGER
DIMENSION: Scalar

A.11.6 Zeeman_Input_SetValue interface

NAME:
Zeeman_Input_SetValue

PURPOSE:

Elemental subroutine to set the values of Zeeman_Input
object components.

186

CALLING SEQUENCE:

CALL Zeeman_Input_SetValue(Zeeman_Input , &
Field_Strength = Field_Strength, &
Cos_ThetaB = Cos_ThetaB , &
Cos_PhiB = Cos_PhiB , &
Doppler_Shift = Doppler_Shift)
OBJECTS:
Zeeman_Input: Zeeman_Input object for which component values
are to be set.
UNITS: N/A
TYPE: Zeeman_Input_type

DIMENSION: Scalar or any rank
ATTRIBUTES: INTENT(IN QUT)

OPTIONAL INPUTS:

Field_Strength: Earth’s magnetic filed strength
UNITS: Gauss
TYPE: REAL (fp)

DIMENSION: Scalar or same as Zeeman_Input
ATTRIBUTES: INTENT(IN), OPTIONAL

Cos_ThetaB: Cosine of the angle between the Earth magnetic
field and wave propagation vectors.
UNITS: N/A
TYPE: REAL (fp)
DIMENSION: Scalar or same as Zeeman_Input
ATTRIBUTES: INTENT(IN), OPTIONAL

Cos_PhiB: Cosine of the azimuth angle of the Earth magnetic
field vector.
UNITS: N/A
TYPE: REAL (fp)
DIMENSION: Scalar or same as Zeeman_Input
ATTRIBUTES: INTENT(IN), OPTIONAL

Doppler_Shift: Doppler frequency shift caused by Earth-rotation.
Positive towards semsor.
UNITS: KHz
TYPE: REAL (fp)
DIMENSION: Scalar or same as Zeeman_Input
ATTRIBUTES: INTENT(IN), OPTIONAL

A.11.7 Zeeman_Input_ValidRelease interface

NAME:
Zeeman_Input_ValidRelease

PURPOSE:
Function to check the Zeeman_Input Release value.

187

CALLING SEQUENCE:
IsValid = Zeeman_Input_ValidRelease(Zeeman_Input)

INPUTS:
Zeeman_Input: Zeeman_Input object for which the Release component
is to be checked.
UNITS: N/A
TYPE: Zeeman_Input_type
DIMENSION: Scalar
ATTRIBUTES: INTENT(IN)

FUNCTION RESULT:

IsValid: Logical value defining the release validity.
UNITS: N/A
TYPE: LOGICAL

DIMENSION: Scalar

A.11.8 Zeeman_Input_WriteFile interface

NAME:
Zeeman_Input_WriteFile

PURPOSE:
Function to write Zeeman_Input object files.

CALLING SEQUENCE:
Error_Status = Zeeman_Input_WriteFile(&

Zeeman_Input , &
Filename , &
No_Close = No_Close, &
Quiet = Quiet)
OBJECTS:
Zeeman_Input: Zeeman_Input object containing the data to write to file.
UNITS: N/A
TYPE: Zeeman_Input_type
DIMENSION: Scalar
ATTRIBUTES: INTENT(IN)
INPUTS:
Filename: Character string specifying the name of a
Zeeman_Input format data file to write.
UNITS: N/A
TYPE: CHARACTER (%)

DIMENSION: Scalar
ATTRIBUTES: INTENT(IN)

OPTIONAL INPUTS:
No_Close: Set this logical argument to *NOT* close the datafile

188

upon exiting this routine. This option is required if

the Zeeman_Input data is to be embedded within another file.

If == .FALSE., File is closed upon function exit [DEFAULT].
== .TRUE., File is NOT closed upon function exit

If not specified, default is .FALSE.

UNITS: N/A

TYPE: LOGICAL

DIMENSION: Scalar

ATTRIBUTES: INTENT(IN), OPTIONAL

Quiet: Set this logical argument to suppress INFORMATION
messages being printed to stdout
If == .FALSE., INFORMATION messages are OUTPUT [DEFAULT].
== .TRUE., INFORMATION messages are SUPPRESSED.
If not specified, default is .FALSE.
UNITS: N/A
TYPE: LOGICAL
DIMENSION: Scalar
ATTRIBUTES: INTENT(IN), OPTIONAL

FUNCTION RESULT:

Error_Status: The return value is an integer defining the error status.
The error codes are defined in the Message_Handler module.
If == SUCCESS, the file write was successful

== FAILURE, an unrecoverable error occurred.

UNITS: N/A
TYPE: INTEGER
DIMENSION: Scalar

189

Valid Sensor Identifiers

This section contains a table detailing the instruments for which there are CRTM coefficients. For most sensors
there are transmittance coefficient (TauCoeff) datafiles for both the Optical Depth in Absorber Space (ODAS;
also known as Compact-OPTRAN) and Optical Depth in Pressure Space (ODPS) transmittance algorithms. All
visible and SSU channels have only ODAS coefficients.

190

Table B.1: CRTM sensor identifiers and the availability of ODAS or ODPS TauCoeff files

Instrument Sensor Id ODAS available ODPS available
Envisat AATSR aatsr_envisat yes yes
GOES-R ABI abi_gr yes yes
Aqua AIRS (281ch. subset) airs281_aqua yes yes
Aqua AIRS (324ch. subset) airs324_aqua yes yes
Aqua AIRS (all channels) airs2378_aqua yes yes

Aqua AIRS Module-1a airsMla aqua yes yes
Aqua AIRS Module-1b airsMib_aqua yes yes
Aqua AIRS Module-2a airsM2a_aqua yes yes
Aqua AIRS Module-2b airsM2b_aqua yes yes
Aqua AIRS Module-3 airsM3_aqua yes yes
Aqua AIRS Module-4a airsM4a aqua yes yes
Aqua AIRS Module-4b airsM4b_aqua yes yes
Aqua AIRS Module-4¢ airsM4c_aqua yes yes
Aqua AIRS Module-4d airsM4d_aqua yes yes
Aqua AIRS Module-5 airsM5_aqua yes yes
Aqua AIRS Module-6 airsM6_aqua yes yes
Aqua AIRS Module-7 airsM7_aqua yes yes
Aqua AIRS Module-8 airsM8_aqua yes yes
Aqua AIRS Module-9 airsM9_aqua yes yes
Aqua AIRS Module-10 airsM10_aqua yes yes
Aqua AIRS Module-11 airsM11l_aqua yes yes
Aqua AIRS Module-12 airsM12_aqua yes yes
Aqua AMSR-E amsre_aqua yes yes
GCOM-W1 AMSR-2 amsr2_gcom-wl yes yes
Aqua AMSU-A amsua_aqua yes yes
NOAA-15 AMSU-A amsua nib yes yes
NOAA-16 AMSU-A amsua ni6 yes yes
NOAA-17 AMSU-A amsua ni7 yes yes
NOAA-18 AMSU-A amsua ni8 yes yes
NOAA-19 AMSU-A amsua ni9 yes yes
MetOp-A AMSU-A amsua_metop-a yes yes
MetOp-B AMSU-A amsua_metop-b yes yes
MetOp-C AMSU-A amsua_metop-c yes yes
NOAA-15 AMSU-B amsub_nib yes yes
NOAA-16 AMSU-B amsub_ni16 yes yes
NOAA-17 AMSU-B amsub_nl7 yes yes
NPP ATMS atms_npp yes yes
ERS-1 ATSR atsrl_ersl yes yes
ERS-2 ATSR atsr2_ers2 yes yes
TIROS-N AVHRR/2 avhrr2_tirosn yes yes
NOAA-06 AVHRR/2 avhrr2_n06 yes yes
NOAA-07 AVHRR/2 avhrr2_n07 yes yes
NOAA-08 AVHRR/2 avhrr2 n08 yes yes
NOAA-09 AVHRR/2 avhrr2 n09 yes yes
NOAA-10 AVHRR/2 avhrr2 n10 yes yes
NOAA-11 AVHRR/2 avhrr2.nil yes yes
NOAA-12 AVHRR/2 avhrr2.ni2 yes yes
NOAA-14 AVHRR/2 avhrr2 ni14d yes yes
NOAA-15 AVHRR/3 avhrr3 n15 yes yes

Continued on Next Page. ..

191

Table B.1 - Continued

Instrument Sensor Id ODAS available ODPS available
NOAA-16 AVHRR/3 avhrr3.nl6 yes yes
NOAA-17 AVHRR/3 avhrr3.nl7 yes yes
NOAA-18 AVHRR/3 avhrr3 ni8 yes yes
NOAA-19 AVHRR/3 avhrr3 n19 yes yes
MetOp-A AVHRR/3 avhrr3_metop-a yes yes
MetOp-B AVHRR/3 avhrr3_metop-b yes yes

NPP CrlS (374ch. subset) cris374 npp yes yes
NPP CrlIS (399ch. subset) cris399_npp yes yes
NPP CrIS (all channels) cris1305_npp yes yes
NPP CrIS Band 1 crisBl_npp yes yes

NPP CrIS Band 2 crisB2_npp yes yes

NPP CrIS Band 3 crisB3 npp yes yes

GPM GMI gmi_gpm yes yes
TIROS-N HIRS/2 hirs2 tirosn yes yes
NOAA-06 HIRS/2 hirs2 n06 yes yes
NOAA-07 HIRS/2 hirs2n07 yes yes
NOAA-08 HIRS/2 hirs2 n08 yes yes
NOAA-09 HIRS/2 hirs2 n09 yes yes
NOAA-10 HIRS/2 hirs2 ni10 yes yes
NOAA-11 HIRS/2 hirs2 nl1 yes yes
NOAA-12 HIRS/2 hirs2 ni12 yes yes
NOAA-14 HIRS/2 hirs2 nl4 yes yes
NOAA-15 HIRS/3 hirs3.ni15 yes yes
NOAA-16 HIRS/3 hirs3 ni16 yes yes
NOAA-17 HIRS/3 hirs3 ni17 yes yes
NOAA-18 HIRS/4 hirs4 n18 yes yes
NOAA-19 HIRS/4 hirs4.n19 yes yes
MetOp-A HIRS/4 hirs4 metop-a yes yes
MetOp-B HIRS/4 hirs4 metop-b yes yes

Aqua HSB hsb_aqua yes yes
MetOp-A TASI (300ch. subset) iasi300_metop-a yes yes
MetOp-A IASI (316¢h. subset) iasi316_metop-a yes yes
MetOp-A TAST (616ch. subset) iasi616 metop-a yes yes
MetOp-A TAST (all channels) iasi8461 metop-a yes yes
MetOp-A TASI Band 1 iasiB1 metop-a yes yes
MetOp-A TASI Band 2 iasiB2 metop-a yes yes
MetOp-A TASI Band 3 iasiB3_metop-a yes yes
MetOp-B TASI (300ch. subset) iasi300_metop-b yes yes
MetOp-B TASI (316¢ch. subset) iasi316 metop-b yes yes
MetOp-B TASI (616ch. subset) iasi616_metop-b yes yes
MetOp-B TASI (all channels) iasi8461 metop-b yes yes
MetOp-B TASI Band 1 iasiB1l_metop-b yes yes
MetOp-B TASI Band 2 iasiB2 metop-b yes yes
MetOp-B TASI Band 3 iasiB3_metop-b yes yes
GOES-08 Imager imgr_g08 yes yes
GOES-09 Imager imgr_g09 yes yes
GOES-10 Imager imgr_gi10 yes yes
GOES-11 Imager imgr gil yes yes
GOES-12 Imager imgr gi2 yes yes
GOES-13 Imager imgr gi13 yes yes

Continued on Next Page. ..

192

Table B.1 - Continued

Instrument Sensor Id ODAS available ODPS available
GOES-14 Imager imgr_gl4 yes yes
GOES-15 Imager imgr_gi5 yes yes

MTSAT-1R Imager imgr mtir yes yes
MTSAT-2 Imager imgr mt2 yes yes
Fengyun-3a IRAS iras_fy3a yes yes
Fengyun-3b IRAS iras_fy3b yes yes

Megha-Tropiques MADRAS madras_meghat yes yes
Fengyun-3a MERSI mersi_fy3a yes yes
NOAA-18 MHS mhs n18 yes yes
NOAA-19 MHS mhs n19 yes yes
MetOp-A MHS mhs_metop-a yes yes
MetOp-B MHS mhs_metop-b yes yes
MetOp-C MHS mhs_metop-c yes yes
COMS-1 MI (low patch) mi-1_coms yes yes
COMS-1 MI (medium patch) mi-m_coms yes yes
Aqua MODIS modis_aqua yes yes

Terra MODIS modis_terra yes yes
TIROS-N MSU msu_tirosn yes yes
NOAA-06 MSU msu_n06 yes yes
NOAA-07 MSU msu_n07 yes yes
NOAA-08 MSU msu_n08 yes yes
NOAA-09 MSU msu_n09 yes yes
NOAA-10 MSU msu.ni0 yes yes
NOAA-11 MSU msunil yes yes
NOAA-12 MSU msu ni?2 yes yes
NOAA-14 MSU msu-nl4 yes yes
Meteosat-3 MVIRI (backup) mviriBKUP_m03 no yes
Meteosat-4 MVIRI (backup) mviriBKUP_m04 no yes
Meteosat-5 MVIRI (backup) mviriBKUP_m05 no yes
Meteosat-6 MVIRI (backup) mviriBKUP_m06 no yes
Meteosat-7 MVIRI (backup) mviriBKUP mO7 no yes
Meteosat-3 MVIRI (nominal) mviriNOM _mO3 no yes
Meteosat-4 MVIRI (nominal) mviriNOM_m04 no yes
Meteosat-5 MVIRI (nominal) mviriNOM_m05 no yes
Meteosat-6 MVIRI (nominal) mviriNOM_mO6 no yes
Meteosat-7 MVIRI (nominal) mviriNOM.mO7 no yes

Fengyun-3a MWHS mwhs_fy3a yes yes

Fengyun-3b MWHS mwhs_fy3b yes yes
Fengyun-3a MWRI mwri_fy3a yes yes

Fengyun-3b MWRI mwri_fy3b yes yes

Fengyun-3a MWTS mwts_fy3a yes yes

Fengyun-3b MWTS mwts_fy3b yes yes

Megha-Tropiques SAPHIR saphir_meghat yes yes

Meteosat-08 SEVIRI seviri m08 yes yes

Meteosat-09 SEVIRI seviri m09 yes yes

Meteosat-10 SEVIRI seviriml0 yes yes

GOES-10 Sounder (Detector 1) sndrD1_g10 yes yes
GOES-10 Sounder (Detector 2) sndrD2_g10 yes yes
GOES-10 Sounder (Detector 3) sndrD3_g10 yes yes
GOES-10 Sounder (Detector 4) sndrD4 _g10 yes yes

Continued on Next Page. ..

193

Table B.1 - Continued

Instrument Sensor Id ODAS available ODPS available
GOES-11 Sounder (Detector 1) sndrD1_gl1 yes yes
GOES-11 Sounder (Detector 2) sndrD2_g11 yes yes
GOES-11 Sounder (Detector 3) sndrD3_gl1 yes yes
GOES-11 Sounder (Detector 4) sndrD4_gl1 yes yes
GOES-12 Sounder (Detector 1) sndrD1_gi2 yes yes
GOES-12 Sounder (Detector 2) sndrD2 _g12 yes yes
GOES-12 Sounder (Detector 3) sndrD3_g12 yes yes
GOES-12 Sounder (Detector 4) sndrD4_g12 yes yes
GOES-13 Sounder (Detector 1) sndrD1_g13 yes yes
GOES-13 Sounder (Detector 2) sndrD2_g13 yes yes
GOES-13 Sounder (Detector 3) sndrD3_g13 yes yes
GOES-13 Sounder (Detector 4) sndrD4 g13 yes yes
GOES-14 Sounder (Detector 1) sndrD1_g14 yes yes
GOES-14 Sounder (Detector 2) sndrD2_g14 yes yes
GOES-14 Sounder (Detector 3) sndrD3_gl14 yes yes
GOES-14 Sounder (Detector 4) sndrD4_gl14 yes yes
GOES-15 Sounder (Detector 1) sndrD1_g15 yes yes
GOES-15 Sounder (Detector 2) sndrD2 _g15 yes yes
GOES-15 Sounder (Detector 3) sndrD3_g15 yes yes
GOES-15 Sounder (Detector 4) sndrD4_g15 yes yes

GOES-08 Sounder sndr_g08 yes yes
GOES-09 Sounder sndr_g09 yes yes
GOES-10 Sounder sndr_g10 yes yes
GOES-11 Sounder sndr_gi1 yes yes
GOES-12 Sounder sndr_g12 yes yes
GOES-13 Sounder sndr_g13 yes yes
GOES-14 Sounder sndr_gl4 yes yes
GOES-15 Sounder sndr_g15 yes yes
DMSP-08 SSM/I ssmi_f08 yes yes
DMSP-10 SSM/I ssmi_f10 yes yes
DMSP-11 SSM/I ssmi_f11 yes yes
DMSP-13 SSM/I ssmi_f13 yes yes
DMSP-14 SSM/IT ssmi_f14 yes yes
DMSP-15 SSM/I ssmi_f15 yes yes
DMSP-16 SSMIS ssmis_f16 yes yes
DMSP-17 SSMIS ssmis_f17 yes yes
DMSP-18 SSMIS ssmis_f18 yes yes
DMSP-19 SSMIS ssmis_f19 yes yes
DMSP-20 SSMIS ssmis_f20 yes yes
DMSP-13 SSM/T-1 ssmt1_f13 yes yes
DMSP-15 SSM/T-1 ssmt1_f15 yes yes
DMSP-14 SSM/T-2 ssmt2_f14 yes yes
DMSP-15 SSM/T-2 ssmt2_f15 yes yes
TIROS-N SSU ssu_tirosn yes yes
NOAA-06 SSU ssu_n06 yes yes
NOAA-07 SSU ssu_n07 yes yes
NOAA-08 SSU ssu_n08 yes yes
NOAA-09 SSU ssu_n09 yes yes
NOAA-11 SSU ssunll yes yes
NOAA-14 SSU ssu.nl4 yes yes

Continued on Next Page. ..

194

Table B.1 - Continued

Instrument Sensor Id ODAS available ODPS available
TRMM TMI tmi_trmm yes yes
GOES-R ABI (visible) v.abi_gr yes no
NOAA-15 AVHRR/3 (visible) v.avhrr3 nib yes no
NOAA-16 AVHRR/3 (visible) v.avhrr3.ni16é yes no
NOAA-17 AVHRR/3 (visible) v.avhrr3.ni17 yes no
NOAA-18 AVHRR/3 (visible) v.avhrr3nis8 yes 1no
NOAA-19 AVHRR/3 (visible) v.avhrr3.ni19 yes no
MetOp-A AVHRR/3 (visible) v.avhrr3_metop-a yes no
MetOp-B AVHRR/3 (visible) v.avhrr3_metop-b yes no
GOES-11 Imager (visible) v.imgr_gil yes no
GOES-12 Tmager (visible) v.imgr_gi2 yes no
GOES-13 Imager (visible) v.imgr_gi3 yes no
GOES-14 Imager (visible) v.imgr gid yes no
GOES-15 Imager (visible) v.imgr gib yes no
MTSAT-2 Imager (visible) v.imgr mt2 yes no
Aqua MODIS (visible) v.modis_aqua yes no
Terra MODIS (visible) v.modis_terra yes no
Meteosat-08 SEVIRI (visible) v.seviri m08 yes no
Meteosat-09 SEVIRI (visible) v.seviri m09 yes no
Meteosat-10 SEVIRI (visible) v.sevirimiO yes no
NPP VIIRS Imager, HiRes (visible) v.viirs-i_npp yes no
NPP VIIRS Imager, ModRes (visible) v.viirs-m_npp yes no
GOES-4 VAS vas_g04 no yes
GOES-5 VAS vas_g05 no yes
GOES-6 VAS vas_g06 no yes
GOES-7 VAS vas_g07 no yes
NPP VIIRS Imager, HiRes viirs-i_npp yes yes
NPP VIIRS Imager, ModRes viirs-m_npp yes yes
Fengyun-3a VIRR virr_fy3a yes yes
GMS-5 VISSR (Detector A) vissrDetA_gmsb yes yes
GMS-5 VISSR (Detector B) vissrDetB_gmsb no yes
Kalpana-1 VHRR vhrr_kalpanal yes yes
ITOS VTPR-S1 vtprSi_itos yes yes
ITOS VTPR-S2 vtprS2_itos yes yes
ITOS VTPR-S3 vtprS3_itos yes yes
ITOS VTPR-54 vtprS4_itos yes yes
Coriolis WindSat windsat_coriolis yes yes

195

C
Migration Path from REL-2.0.x to REL-2.1

This section details the user code changes that need to be made to migrate from using CRTM v2.0.x to v2.1.
It is assumed that you've read chapter 4 and aware of the various other changes to the CRTM that can (will?)
cause differences in any before/after result comparisons.

C.1 CRTM Initialisation: Emissivity/Reflectivity model datafile arguments

New, optional, arguments have been added to the CRTM initialisation function to allow different data files
(referred to as “EmisCoeff” files) for the various emissivity /reflectivity models to be loaded during initialisation.

C.1.1 Old v2.0.x Calling Syntax

In the v2.0.x CRTM the only emissivity/reflectivity model data loaded during initialisation was that for the
infrared sea surface emissivity model (IRSSEM). The v2.0.x CRTM initialisation function used a generic name,
“EmisCoeff.bin”, as the data file to load. Generally this file was symbolically linked to a specific dataset
file (for the Nalli or Wu-Smith model). Alternatively, you could specify the actual file name via the optional
EmisCoeff File argument. To load the supplied Nalli emissivity model dataset, the v2.0.x CRTM initialisation
called looked like,

INTEGER :: err_stat

err_stat = CRTM_Init(sensor_id, chinfo, &
EmisCoeff_File = ’Nalli.IRwater.EmisCoeff.bin’)
IF (err_stat /= SUCCESS) THEN
handle error...
END IF

C.1.2 New v2.1 Calling Syntax

Now, in v2.1, emissivity /reflectivity model datafiles are loaded for each spectral type (infrared, microwave, and
visible) as well as each main surface type (land, water, snow, and ice). This was done to get set up for planned
future changes and updates to the emissivity and reflectivity models for various spectral regions and surface
types. because of the need for separate arguments for the different cases, the use of the generic EmisCoeff File
argument to refer to the IRSSEM data is deprecated in favour of the specific IRwaterCoeff File optional
argument!. The equivalent v2.1 initialisation call is now,

IThe EmisCoeff _File argument is deprecated, but still available. However, it will be removed in a future release.

196

INTEGER :: err_stat

err_stat = CRTM_Init(sensor_id, chinfo, &
IRwaterCoeff_File = ’Nalli.IRwater.EmisCoeff.bin’)
IF (err_stat /= SUCCESS) THEN
handle error...
END IF

Note that the Nalli model is the default so the above call is equivalent to not specifying the IRwaterCoeff File
argument at all.

In general you can rely on the default data files loaded. See table 4.1 for a list of available data files where different
data are available and you have a choice to specify something other than the default. See the CRTM_Init ()
documentation for a complete list of optional arguments to specify the various EmisCoeff datafiles.

C.2 CRTM Surface: Infrared/Visible Land surface type specification

The v2.1 updates to the land surface type specifications, along with examples of how to use them, are described
in detail in section 4.6.2. As such, in this section we’ll simply mention the changes you need to make to your
CRTM calling code to replicate the same functionality.

C.2.1 Old v2.0.x Assignment Syntax

In v2.0.x, when specifying land surface types in the Surface structure, a number of parameterised values were
made available for assignment. For example, one could do something like,

TYPE(CRTM_Surface_type) :: sfc(2)

! Assign tundra land surface subtype in v2.0.x CRTM
sfc(1)YLand_Type = TUNDRA

where the TUNDRA was made available and referenced a particular reflectivity spectrum. This approach is possible
only when a single land surface classification scheme is used. In the case of the v2.0.x CRTM that was the
NPOESS classification. In v2.1 additional land surface classifications, such as USGS and IGBP, are available so
a simple parameter to reference a reflectivity spectrum index becomes more difficult to maintain.

C.2.2 New v2.1 Assignment Syntax

Rather than parameterise all the land surface subtypes for all the available classifications, what you need to do
is to refer to the particular table defining the subtypes for the land surface classification scheme you are using
and select the numerical value for the subtype you want.

So, in v2.1, the equivalent assignment for the above tundra land surface subtype would begin by referrring to
the NPOESS classification subtype table, table 4.12, find the tundra entry, and use the associated “classification
index” (in this case 10) in the surface structure assignment,

TYPE(CRTM_Surface_type) :: sfc(2)

! Assign tundra land surface subtype for NPOESS classification in v2.1 CRTM
sfc(1)%Land_Type = 10

197

C.3 CRTM Surface: Microwave Land surface type specification

The v2.1 updates to the land surface type specifications for use with the microwave land surface emissivity model
involve the specification of the soil and vegetation types as well as the leaf area index (LAI). The available soil
and vegetation types, along with examples of how to use them, are described in detail in section 4.6.2.

C.3.1 Old v2.0.x Assignment Syntax

In v2.0.x, there was no means to specify the soil type, vegetation type, or LAI as they were not used in the
microwave land emissivity algorithm.

C.3.2 New v2.1 Assignment Syntax

New components were added to the Surface structure to allow specification of the soil type, vegetation type,
and LAI. The structure is initialised to default values so not specifying values is equivalent to the following,

! Default values for new inputs to microwave land surface emissivity algorithm
sfc(1)%LAT = 3.5_fp

sfc(1)%Soil_Type =1

sfc(1)%Vegetation_Type = 1

See tables 4.15 and 4.16 for the valid soil and vegetation types accepted by the CRTM v2.1.

198

	What's New in v2.1
	New Science
	New Functionality
	Interface Changes

	What's New in v2.1.1
	Bug Fixes
	Update of sensor coefficient files

	What's New in v2.1.2
	Science Updates
	Bug Fixes

	What's New in v2.1.3
	Science Updates
	Update of sensor coefficient files
	Bug Fixes

	Introduction
	Conventions
	Naming of Structure Types and Instances of Structures
	Naming of Definition Modules
	Standard Definition Module Procedures
	Naming of Application Modules

	Components
	Atmospheric Optics
	Surface Optics
	Radiative Transfer Solution

	Models
	Design Framework

	How to obtain the CRTM
	CRTM ftp download site
	Coefficient Data

	How to build the CRTM library
	Build Files
	Predefined Configuration Files
	Compilation Environment Setup
	Building the library
	Testing the library
	Installing the library
	Clean Up
	Linking to the library

	How to use the CRTM library
	Access the CRTM module
	Declare the CRTM structures
	Initialise the CRTM
	Where are the coefficient data files?
	No clouds or aerosols?
	What surface emissivity model?
	I don't want to process all of the channels!

	Allocate the CRTM arrays
	Create the CRTM structures
	Allocation of the Atmosphere structures
	Allocation of the RTSolution structure
	Allocation of the Options structure

	Fill the CRTM input structures with data
	Filling the Atmosphere structure with data
	Filling the Surface structure with data
	Filling the Geometry structure with data
	Filling the Options structure with data
	Initialising the K-matrix input and outputs

	Call the required CRTM function
	The CRTM Forward model
	The CRTM K-Matrix model
	The CRTM Tangent-linear and Adjoint models
	The CRTM Aerosol Optical Depth (AOD) functions

	Inspect the CRTM output structures
	Destroy the CRTM and cleanup

	Interface Descriptions
	Initialisation functions
	CRTM_Init interface

	Main functions
	CRTM_Forward interface
	CRTM_Tangent_Linear interface
	CRTM_Adjoint interface
	CRTM_K_Matrix interface

	Aerosol optical depth functions
	CRTM_AOD interface
	CRTM_AOD_TL interface
	CRTM_AOD_AD interface
	CRTM_AOD_K interface

	Destruction functions
	CRTM_Destroy interface

	Utility functions
	CRTM_Version interface
	CRTM_IsInitialized interface
	CRTM_LifeCycleVersion interface
	CRTM_Forward_Version interface
	CRTM_Tangent_Linear_Version interface
	CRTM_Adjoint_Version interface
	CRTM_K_Matrix_Version interface
	CRTM_AOD_Version interface

	Bibliography
	Structure and procedure interface definitions
	ChannelInfo Structure
	CRTM_ChannelInfo_Associated interface
	CRTM_ChannelInfo_Channels interface
	CRTM_ChannelInfo_DefineVersion interface
	CRTM_ChannelInfo_Destroy interface
	CRTM_ChannelInfo_Inspect interface
	CRTM_ChannelInfo_Subset interface
	CRTM_ChannelInfo_n_Channels interface

	Atmosphere Structure
	CRTM_Atmosphere_AddLayerCopy interface
	CRTM_Atmosphere_Associated interface
	CRTM_Atmosphere_Compare interface
	CRTM_Atmosphere_Create interface
	CRTM_Atmosphere_DefineVersion interface
	CRTM_Atmosphere_Destroy interface
	CRTM_Atmosphere_InquireFile interface
	CRTM_Atmosphere_Inspect interface
	CRTM_Atmosphere_IsValid interface
	CRTM_Atmosphere_ReadFile interface
	CRTM_Atmosphere_SetLayers interface
	CRTM_Atmosphere_WriteFile interface
	CRTM_Atmosphere_Zero interface
	CRTM_Get_AbsorberIdx interface
	CRTM_Get_PressureLevelIdx interface

	Cloud Structure
	CRTM_Cloud_AddLayerCopy interface
	CRTM_Cloud_Associated interface
	CRTM_Cloud_Compare interface
	CRTM_Cloud_Create interface
	CRTM_Cloud_DefineVersion interface
	CRTM_Cloud_Destroy interface
	CRTM_Cloud_InquireFile interface
	CRTM_Cloud_Inspect interface
	CRTM_Cloud_IsValid interface
	CRTM_Cloud_ReadFile interface
	CRTM_Cloud_SetLayers interface
	CRTM_Cloud_WriteFile interface
	CRTM_Cloud_Zero interface

	Aerosol Structure
	CRTM_Aerosol_AddLayerCopy interface
	CRTM_Aerosol_Associated interface
	CRTM_Aerosol_Compare interface
	CRTM_Aerosol_Create interface
	CRTM_Aerosol_DefineVersion interface
	CRTM_Aerosol_Destroy interface
	CRTM_Aerosol_InquireFile interface
	CRTM_Aerosol_Inspect interface
	CRTM_Aerosol_IsValid interface
	CRTM_Aerosol_ReadFile interface
	CRTM_Aerosol_SetLayers interface
	CRTM_Aerosol_WriteFile interface
	CRTM_Aerosol_Zero interface

	Surface Structure
	CRTM_Surface_Associated interface
	CRTM_Surface_Compare interface
	CRTM_Surface_CoverageType interface
	CRTM_Surface_Create interface
	CRTM_Surface_DefineVersion interface
	CRTM_Surface_Destroy interface
	CRTM_Surface_InquireFile interface
	CRTM_Surface_Inspect interface
	CRTM_Surface_IsCoverageValid interface
	CRTM_Surface_IsValid interface
	CRTM_Surface_ReadFile interface
	CRTM_Surface_WriteFile interface
	CRTM_Surface_Zero interface

	SensorData Structure
	CRTM_SensorData_Associated interface
	CRTM_SensorData_Compare interface
	CRTM_SensorData_Create interface
	CRTM_SensorData_DefineVersion interface
	CRTM_SensorData_Destroy interface
	CRTM_SensorData_InquireFile interface
	CRTM_SensorData_Inspect interface
	CRTM_SensorData_IsValid interface
	CRTM_SensorData_ReadFile interface
	CRTM_SensorData_WriteFile interface
	CRTM_SensorData_Zero interface

	Geometry Structure
	CRTM_Geometry_Associated interface
	CRTM_Geometry_Compare interface
	CRTM_Geometry_Create interface
	CRTM_Geometry_DefineVersion interface
	CRTM_Geometry_Destroy interface
	CRTM_Geometry_GetValue interface
	CRTM_Geometry_InquireFile interface
	CRTM_Geometry_Inspect interface
	CRTM_Geometry_IsValid interface
	CRTM_Geometry_ReadFile interface
	CRTM_Geometry_ReadRecord interface
	CRTM_Geometry_SetValue interface
	CRTM_Geometry_WriteFile interface
	CRTM_Geometry_WriteRecord interface

	RTSolution Structure
	CRTM_RTSolution_Associated interface
	CRTM_RTSolution_Compare interface
	CRTM_RTSolution_Create interface
	CRTM_RTSolution_DefineVersion interface
	CRTM_RTSolution_Destroy interface
	CRTM_RTSolution_InquireFile interface
	CRTM_RTSolution_Inspect interface
	CRTM_RTSolution_ReadFile interface
	CRTM_RTSolution_WriteFile interface
	CRTM_RTSolution_Zero interface

	Options Structure
	CRTM_Options_Associated interface
	CRTM_Options_Create interface
	CRTM_Options_DefineVersion interface
	CRTM_Options_Destroy interface
	CRTM_Options_InquireFile interface
	CRTM_Options_Inspect interface
	CRTM_Options_IsValid interface
	CRTM_Options_ReadFile interface
	CRTM_Options_WriteFile interface

	SSU_Input Structure
	SSU_Input_CellPressureIsSet interface
	SSU_Input_DefineVersion interface
	SSU_Input_GetValue interface
	SSU_Input_Inspect interface
	SSU_Input_IsValid interface
	SSU_Input_ReadFile interface
	SSU_Input_SetValue interface
	SSU_Input_ValidRelease interface
	SSU_Input_WriteFile interface

	Zeeman_Input Structure
	Zeeman_Input_DefineVersion interface
	Zeeman_Input_GetValue interface
	Zeeman_Input_Inspect interface
	Zeeman_Input_IsValid interface
	Zeeman_Input_ReadFile interface
	Zeeman_Input_SetValue interface
	Zeeman_Input_ValidRelease interface
	Zeeman_Input_WriteFile interface

	Valid Sensor Identifiers
	Migration Path from REL-2.0.x to REL-2.1
	CRTM Initialisation: Emissivity/Reflectivity model datafile arguments
	Old v2.0.x Calling Syntax
	New v2.1 Calling Syntax

	CRTM Surface: Infrared/Visible Land surface type specification
	Old v2.0.x Assignment Syntax
	New v2.1 Assignment Syntax

	CRTM Surface: Microwave Land surface type specification
	Old v2.0.x Assignment Syntax
	New v2.1 Assignment Syntax

