The Wind Lidar Mission ADM-Aeolus

Data Processing

David Tan Research Department

ECMWF

Acknowledgements:

ESA (Mission Science & Aeolus project team)

Aeolus Mission Advisory Group

Level-1B/2A/2B Development Teams

Contents

- Summary on 2 Slides
- Background
- Data Processing
 - ♦ Assimilation of Level-2B hlos wind
 - → Simulations of Level-2B hlos wind data
 - → Assimilation impact study
 - ♦ Level-2B processor development
 - → How to make operational Level-2B hlos
 - → Algorithms & rationale
 - → Validation
- Conclusions

Summary of ECMWF activities for ADM-Aeolus

- Prepared for assimilating L2B hlos wind
 - ♦ 2002-04, example for other centres
- Developing Level-2B processor
 - ♦ ECMWF is lead institute, 5 sub-contractors
 - ♦ 2004-present
- Other ongoing work/operational phase
 - ♦ MAG, GSOV, Cal/Val, In-orbit commissioning
 - ♦ ECMWF to generate operational L2B/L2C products, monitor & assimilate Aeolus data, assess impact on NWP
 - ♦ Maintain, develop & distribute L2B processor
 - → On behalf of ESA, using NWP-SAF approach

Status summary: Day-1 system on track

- 1. Level-2B hlos winds primary product for assimilation
 - a. Account for more effects than L1B products
 - b. Will be generated in several environments
 - c. Motivated strategy to distribute source code
- 2. Main algorithm components developed & validated
 - a. Release 1.33 available development/beta-testing
 - b. Documentation and Installation Tests
 - c. Portable tested on several Linux platforms
- 3. Ongoing scientific and technical development
 - a. Sensitivity to inputs, QC/screening, weighting options
- 4. Contact points ESA and/or ECMWF

Contents

- ♦ Summary on 2 Slides
- Background
- ◆ Data Processing
- **♦** Conclusions

Atmospheric Dynamics Mission ADM-Aeolus

ADM-Aeolus with single payload Atmospheric LAser Doppler INstrument

ALADIN

- Observations of Line-of-Sight LOS wind profiles in troposphere to lower stratosphere up to 30 km with vertical resolution from 250 m - 2 km
- horizontal averages over 50 km every 200 km (measurements downlinked at 1km scale)
- Vertical sampling with 25 range gates can be varied up to 8 times during one orbit
- High requirement on random error of HLOS
 <1 m/s (z=0-2 km, for Δz=0.5 km)
 <2 m/s (z=2-16 km, for Δz= 1 km),
 unknown bias <0.4 m/s and linearity error <0.7 %
 - of actual wind speed; HLOS: projection on horizontal of LOS => LOS accuracy = 0.6*HLOS
- Operating @ 355 nm with spectrometers for molecular Rayleigh and aerosol/cloud Mie backscatter
- First wind lidar and first High Spectral Resolution Lidar HSRL in space to obtain aerosol/cloud optical properties (backscatter and extinction coefficients)

ADM-Aeolus Coverage and Data Availability

50 km observations during 6 hour period

- 3200 wind profiles per day: about factor 3 more than radiosondes
- 3 hour data availability after observation (NRT-Service) => 1 data-downlink per orbit; 30 minutes data availability for parts of orbit (QRT-Service with late start of downlink)
- launch date May 2010 (consolidated launch date prediction in some months expected)
- mission lifetime 39 months: observations from 2010-2012

ADM-Aeolus Science Report (ESA publication SP-1311, 2008)

TELLUS 60A(2), Mar 2008 special issue on ADM-Aeolus workshop 2006

Satellite and Instrument ALADIN

Mass and Power Budgets

mass: 1100 kg dry +116-266 kg fuel

power: 1.4 kW avg. (solar array 2.4 kW peak)

mass instrument: 470 kg

power instrument: avg. 840 W (laser 510 W)

Volume: 4.3 m x 2.0 m x 1.9 m

Doppler Lidar Instrument ALADIN

Nd:YAG laser in burst mode operation (120 mJ @ 355 nm, 100 Hz)
1.5 m Cassegrain telescope
Dual-Channel-Receiver with ACCD detector (Accumulation Charge Coupled Device)

Orbit

polar, sun-synchronous, dawn-dusk (6 pm LTAN), 97° inclination; height 410 km (395-425 km), 7 days orbit repeat cycle (109 orbits); 92.5 min orbit duration

Pointing and Orbit Control

GPS, Star-Tracker, Inertial Measurement Unit, Yaw steering to compensate for earth rotation

Launcher tbd 2008

Rockot (Russia), Dnepr (Russia) or Vega (ESA)

Comparison of Power-Aperture Products of Space Lidars

Lidar	Lidar altitude	Pulse energy	Pulse rep. rate	Mirror	Power-aperture p PAP, range-cor.	oroduct
LITE (532 nm)	250 km	560 mJ	10 Hz	1.0 m	7.0 10 ⁻¹¹ W	
GLAS (532 nm)	600 km	35 mJ	40 Hz	0.9 m	$0.25 \ 10^{-11} \ \mathrm{W}$	
CALIOP (532 nm)	700 km	110 mJ	20 Hz	1.0 m	$0.35 \ 10^{-11} \ \mathrm{W}$	Factor 45
ALADIN (355 nm)	410 km	150 mJ	100 Hz	1.5 m	15.8 10 ⁻¹¹ W	Pactor 43
ATLID (355 nm)	450 km	20 mJ	100 Hz	0.6 m	$0.28 \ 10^{-11} \ \mathrm{W}$	Factor 56

adapted from A. Ansmann 2006

ADM-Aeolus Ground Segment

Ground Segment - Svalbard Satellite Reception Station

Data-downlink with 5 Mbit/s with X-Band to 2.4 m antenna to Svalbard, Norway (78°15'N)

ADM-Aeolus Data Products

Product	Contents	Processor developer and location	Size in MByte/orbit
Level 0	Time ordered source packets with ALADIN measurement & housekeeping data	MDA (Canada) Tromsø (Norway)	47
Level 1b	Geo-located, calibrated observational data	MDA (Canada)	10-15 (BUFR)
	 preliminary HLOS wind profiles (standard atmosphere used in Rayleigh processing) – not suitable for assimilation spectrometer readouts at "measurement" scale (1-5 km) – input for Level 2a/b processing viewing geometry & scene geo-location data 	Tromsø (Norway)	+ 22 (EE XML Format)
Level 2a	Supplementary product	DLR-IMF (Germany)	12
	Cloud profiles, coverage, cloud top heights		
	 Aerosol extinction and backscatter profiles, ground reflectance, optical depth 	Tromsø (Norway)	
Level 2b	Meteorologically representative HLOS wind observations HLOS wind profiles at "observation" scale (~ 50 km) suitable for assimilation - temperature T and pressure p (Rayleigh-Brillouin) correction applied with ECMWF (or other) model T and p	ECMWF Reading (UK) (and other NWP/research centres)	18
Level 2c	Aeolus assisted wind vector product Vertical wind profiles (u and v component); NWP model output after assimilation of Aeolus HLOS wind	ECMWF Reading (UK)	22

Ongoing ADM-Aeolus Scientific Studies

Title	Team
Consolidation of ADM-Aeolus Ground Processing including L2A Products	DLR Germany Météo-France, KNMI, IPSL, PSol
Development and Production of Aeolus Wind Data Products	ECMWF UK
	Météo-France, KNMI, IPSL, DLR, DoRIT
ADM-Aeolus Campaigns	DLR Germany Météo-France, KNMI, IPSL, DWD, MIM
Optimisation of spatial and temporal sampling	KNMI Netherlands
Tropical dynamics and equatorial waves	MISU Sweden
Rayleigh-Brillouin Scattering Experiment	tbd

ESA plans an Announcement of Opportunity AO for ADM-Aeolus scientific use of data for late 2008 – distinct from the AO for Cal/Val

Principle of wind measurement with ALADIN

Principle of spectrometer for molecular signal

principle of spectrometer

for aerosol signal

Atmospheric LAser Doppler INstrument

- Direct-Detection Doppler Lidar at 355 nm with 2 spectrometers to analyse backscatter signal from molecules (Rayleigh) and aerosol/clouds (Mie)
- Double edge technique for spectrally broad molecular return, e.g. NASA GLOW instrument (Gentry et al. 2000), but sequential implementation
- Fizeau spectrometer for spectrally small aerosol/cloud return
- Uses Accumulation CCD as detector => high quantum efficiency >0.8 and quasi-photon counting mode
- ALADIN is a High-Spectral Resolution Lidar HSRL with 3 channels: 2 for molecular signal, 1 for aerosol/cloud signal => retrieval of profiles of aerosol/cloud optical properties possible

ALADIN Optical Layout

Transmitter laser assembly:

Reference Laser Head
with stabilized tunable
MISER lasers
seeding the
Power Laser Head
with low power
oscillator,
two amplifiers and
tripling stage
two redundant laser
assemblies in ALADIN

Mie receiver:

Fizeau interferometer, thermally stable, fringe imaged on single accumulation CCD

Telescope:

1.5 m diameter, Cassegrain, SiC lightweight structure, afocal, thermally focused

Transmit/receive optics:

polarizer as T/R switch, Laser Chopper mechanism, 1 focus as field stop, interference filter and prism for broad-band rejection of solar background

Rayleigh receiver:

Double edge Fabry-Perot interferometer, sequentially illuminated, temperature tunable Outputs focused on single accumulation CCD

Contents

- ♦ Summary on 2 Slides
- ◆ Background
- Data Processing
 - ♦ Assimilation of Level-2B hlos wind
 - → Simulations of Level-2B hlos wind data
 - → Assimilation impact study
 - ♦ Level-2B processor development
 - → How to make operational Level-2B hlos
 - → Algorithms & rationale
 - → Validation
- ◆ Conclusions

ADM-Aeolus Ground Segment

L2B data simulated using ECMWF clouds ...

- 90% of Rayleigh data have accuracy better than 2 m/s
- In priority areas
 (filling data gaps in tropics & over oceans)
- Complemented by good Mie data from cloud-tops/cirrus (5 to 10%)
- Tan & AnderssonQJRMS 2005

LIPAS-simulated HLOS data - operational processors later

... & impact studied via assimilation ensembles

Spread in zonal wind (U, m/s)

(Tan et al QJRMS 2007)

Scaling factor ~ 2 for wind error

Tropics, N. & S. Hem all similar

Simulated DWL adds value at all altitudes and in longer-range forecasts (T+48, T+120)

Differences significant (T-test)

Supported by information content diagnostics

Cheaper than OSSEs

Global information content - consistent

Mike Fisher for **Entropy Reduction &** DFS

```
S ~ log( det( PA ) )
  ~ tr ( log (J''^{-1}))
J" = 4d-var Hessian
P^A = analysis error covar.
```

- DWL data are accurate and fill data gaps
 - ♦ subject to usual caveats about simulated data

	TEMP/PILOT	Simulated DWL
Data considered	u,v to 55 hPa	HLOS
Entropy_Reduction ("Info bits")	4830	3123
Deg_Free_Sig	3707	2743
N_Obs	90688	50278
Info bits per obs	0.053	0.062
N_Obs/Deg_Free_Sig	24.5	18.3
Redundancy		2 — 3 %

Assimilation of prototype ADM-Aeolus data

2003/4: introduced L2B hlos as new observed quantity in 4d-Var

Prototype Level-2B (LIPAS simulation, includes representativeness error)

Observation Processing

Data Flow at ECMWF

"Bufr2ODB" Non-IFS processing Convert BUFR to ODB format Recognize HLOS as new known observable IFS "Screening Job" **Observation Screening** Check completeness of report, blacklisting **Background Quality Control** IFS "4D-VAR" Implement HLOS in FWD, TL & ADJ Codes **Assimilation Algorithm** Analysis Variational Quality Control "Obstat" etc (Lars Isaksen) Diagnostic post-processing Recognize HLOS for statistics Rms, bias, histograms

Assimilation of prototype ADM-Aeolus data

2004-: Receive L1B data & L2B processing at NWP centres

Level-1B data

Observation Processing

Level-2B processor will run in different environments ECMWF will supply source code - use as standalone or callable subroutine Aeolus Ground Segment & Data Flows - schematic view

Retrievals account for receiver properties ...

- ◆ Tan et al Tellus60A(2) 2008
- Dabas et al same issue
- Mie light reflected into Rayleigh channel
- Rayleigh wind algorithm includes correction term involving scattering ratio (s)

ADM-Aeolus Optical Receiver - Astrium Satellites

July 2008

... and for atmospheric scattering properties

ILIAD - Impact of P & T and backscatter ratio on Rayleigh Responses - Dabas Meteo-France, Flamant IPSL

Light transmitted through T_A and T_B

Response (function of f_D)

- ♦ 1km-scale spectra are selectively averaged
 - ♦ Account for atmospheric variability improve SNR

Retrievals validated for idealized broken multi-layer clouds - E25 simulator + operational processing chain

Realistic scenes simulated.

Real scattering
 measurements obtained
 from the LITE and
 Calipso missions

ESA's software (E2S) is used to simulate what ADM-Aeolus would 'see'

 The L1B software retrieves scattering ratio at the 1 km measurement resolution

Our input not perfect

Wind retrieval validated in the presence of heterogeneous clouds and wind - E25 simulation

Backscatter from Calipso

Outliers being examined

Wind retrieval validated in the presence of heterogeneous clouds and wind - E25 simulation

July 2008 Data Processing for ADM-Aeolus – LWG Wintergreen & JCSDA

Slide 29

... but only after bugs were fixed in earlier versions of the L1B processor

Retrieved Mie winds revealed systematic error in L1B input

Wind retrieval error from ACCD digitization - theory confirmed by E25 simulation

Photon noise will dominate

Level-2B hlos error estimates - reqts met

Contents

- ♦ Summary on 2 Slides
- ◆ Background
- ◆ Data Processing
- **♦** Conclusions

Conclusions - Day-1 system on track

- 1. Level-2B hlos winds primary product for assimilation
 - a. Account for more effects than L1B products
 - b. Will be generated in several environments
 - c. Motivated strategy to distribute source code
- 2. Main algorithm components developed & validated
 - a. Release 1.33 available development/beta-testing
 - b. Documentation and Installation Tests
 - c. Portable tested on several Linux platforms
- 3. Ongoing scientific and technical development
 - a. Sensitivity to inputs, QC/screening, weighting options
- 4. Contact points ESA and/or ECMWF

Key references

- Baker et al 1995, BAMS
- ◆ ESA 1999 Report for Assessment (Stoffelen et al 2005, BAMS) and 2008 Science Report
- Weissman and Cardinali 2006, QJRMS
- N. Zagar & co-authors, QJRMS & Tellus A
- Tan & Andersson 2005, QJRMS
- ◆ Tan et al 2007, QJRMS
- ◆ Tan et al 2008, Tellus A (Special Issue on ADM-Aeolus)

5.2 Key assimilation operators

- ♦ Tan 2008 ECMWF Seminar Proceedings
- HLOS, TL and AD

- ♦ Generalize to layer averages later
- ♦ Background error
 - ♦ Same as for u and v (assuming isotropy)
- Persistence and/or representativeness error
- Prototype quality control
 - ♦ Adapt local practice for u and v

Background for ADM-Aeolus

Observational Requirements

		PBL	Troposph.	Stratosph.
Vertical Domain	[km]	0-2	2-16	16-20
Vertical Resolution	[km]	0.5	1.0	2.0
Horizontal Domain			global	
Number of Profiles	[hour ⁻¹]		> 100	
Profile Separation	[km]		> 200	
Horizontal Integration Length	[km]		50	
Accuracy (HLOS Component)	[m/s]	1	2	3
Data Availability	[hour]		3	
Length of Observational Data Set	[yr]		3	

→ Most important requirements - accuracy & vertical resolution

5.1 Prototype Level-2C Processing

- ✓ Ingestion of L1B.bufr into ✓ Assimilation of HLOS the assimilation system
 - ♦ L1B obs locations within **ODB** (internal Observation DataBase)
- observations (L1B/L2B)
 - ♦ Corresponding analysis increments (Z100)

2a-4. Other NWP configurations

CECMWF

1a/b. What are Level-2B/2C Products?

2a-1. ECMWF "operational" configuration

ECMWF

2a-2. ESA-LTA late- and re-processing

2a-3. Research/general scientific use

